- Browse by Author
Browsing by Author "Zollman, Amy"
Now showing 1 - 10 of 16
Results Per Page
Sort Options
Item The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration(American Society for Clinical Investigation, 2019-09-03) Uchida, Masaki; Maier, Bernhard; Waghwani, Hitesh Kumar; Selivanovitch, Ekaterina; Pay, S. Louise; Avera, John; Yun, EJun; Sandoval, Ruben M.; Molitoris, Bruce A.; Zollman, Amy; Douglas, Trevor; Hato, Takashi; Medicine, School of MedicineNature exploits cage-like proteins for a variety of biological purposes, from molecular packaging and cargo delivery to catalysis. These cage-like proteins are of immense importance in nanomedicine due to their propensity to self-assemble from simple identical building blocks to highly ordered architecture and the design flexibility afforded by protein engineering. However, delivery of protein nanocages to the renal tubules remains a major challenge because of the glomerular filtration barrier, which effectively excludes conventional size nanocages. Here, we show that DNA-binding protein from starved cells (Dps) — the extremely small archaeal antioxidant nanocage — is able to cross the glomerular filtration barrier and is endocytosed by the renal proximal tubules. Using a model of endotoxemia, we present an example of the way in which proximal tubule–selective Dps nanocages can limit the degree of endotoxin-induced kidney injury. This was accomplished by amplifying the endogenous antioxidant property of Dps with addition of a dinuclear manganese cluster. Dps is the first-in-class protein cage nanoparticle that can be targeted to renal proximal tubules through glomerular filtration. In addition to its therapeutic potential, chemical and genetic engineering of Dps will offer a nanoplatform to advance our understanding of the physiology and pathophysiology of glomerular filtration and tubular endocytosis.Item Bacterial sepsis triggers an antiviral response that causes translation shutdown(American Society for Clinical Investigation, 2019-01-02) Hato, Takashi; Maier, Bernhard; Syed, Farooq; Myslinski, Jered; Zollman, Amy; Plotkin, Zoya; Eadon, Michael T.; Dagher, Pierre C.; Medicine, School of MedicineIn response to viral pathogens, the host upregulates antiviral genes that suppress translation of viral mRNAs. However, induction of such antiviral responses may not be exclusive to viruses, as the pathways lie at the intersection of broad inflammatory networks that can also be induced by bacterial pathogens. Using a model of Gram-negative sepsis, we show that propagation of kidney damage initiated by a bacterial origin ultimately involves antiviral responses that result in host translation shutdown. We determined that activation of the eukaryotic translation initiation factor 2-α kinase 2/eukaryotic translation initiation factor 2α (Eif2ak2/Eif2α) axis is the key mediator of translation initiation block in late-phase sepsis. Reversal of this axis mitigated kidney injury. Furthermore, temporal profiling of the kidney translatome revealed that multiple genes involved in formation of the initiation complex were translationally altered during bacterial sepsis. Collectively, our findings imply that translation shutdown is indifferent to the specific initiating pathogen and is an important determinant of tissue injury in sepsis.Item CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche(American Society of Hematology, 2014-07-24) Chitteti, Brahmananda Reddy; Kobayashi, Michihiro; Cheng, Yinghua; Zhang, Huajia; Poteat, Bradley A.; Broxmeyer, Hal E.; Pelus, Louis M.; Hanenberg, Helmut; Zollman, Amy; Kamocka, Malgorzata M.; Carlesso, Nadia; Cardoso, Angelo A.; Kacena, Melissa A.; Srour, Edward F.; Department of Medicine, IU School of MedicineWe previously showed that immature CD166(+) osteoblasts (OB) promote hematopoietic stem cell (HSC) function. Here, we demonstrate that CD166 is a functional HSC marker that identifies both murine and human long-term repopulating cells. Both murine LSKCD48(-)CD166(+)CD150(+) and LSKCD48(-)CD166(+)CD150(+)CD9(+) cells, as well as human Lin(-)CD34(+)CD38(-)CD49f(+)CD166(+) cells sustained significantly higher levels of chimerism in primary and secondary recipients than CD166(-) cells. CD166(-/-) knockout (KO) LSK cells engrafted poorly in wild-type (WT) recipients and KO bone marrow cells failed to radioprotect lethally irradiated WT recipients. CD166(-/-) hosts supported short-term, but not long-term WT HSC engraftment, confirming that loss of CD166 is detrimental to the competence of the hematopoietic niche. CD166(-/-) mice were significantly more sensitive to hematopoietic stress. Marrow-homed transplanted WT hematopoietic cells lodged closer to the recipient endosteum than CD166(-/-) cells, suggesting that HSC-OB homophilic CD166 interactions are critical for HSC engraftment. STAT3 has 3 binding sites on the CD166 promoter and STAT3 inhibition reduced CD166 expression, suggesting that both CD166 and STAT3 may be functionally coupled and involved in HSC competence. These studies illustrate the significance of CD166 in the identification and engraftment of HSC and in HSC-niche interactions, and suggest that CD166 expression can be modulated to enhance HSC function.Item Combining Intravital Fluorescent Microscopy (IVFM) with Genetic Models to Study Engraftment Dynamics of Hematopoietic Cells to Bone Marrow Niches(Journal of Visualized Experiments, 2017-03-21) Wang, Lin; Kamocka, Malgorzata M.; Zollman, Amy; Carlesso, Nadia; Pediatrics, School of MedicineIncreasing evidence indicates that normal hematopoiesis is regulated by distinct microenvironmental cues in the BM, which include specialized cellular niches modulating critical hematopoietic stem cell (HSC) functions1,2. Indeed, a more detailed picture of the hematopoietic microenvironment is now emerging, in which the endosteal and the endothelial niches form functional units for the regulation of normal HSC and their progeny3,4,5. New studies have revealed the importance of perivascular cells, adipocytes and neuronal cells in maintaining and regulating HSC function6,7,8. Furthermore, there is evidence that cells from different lineages, i.e. myeloid and lymphoid cells, home and reside in specific niches within the BM microenvironment. However, a complete mapping of the BM microenvironment and its occupants is still in progress. Transgenic mouse strains expressing lineage specific fluorescent markers or mice genetically engineered to lack selected molecules in specific cells of the BM niche are now available. Knock-out and lineage tracking models, in combination with transplantation approaches, provide the opportunity to refine the knowledge on the role of specific "niche" cells for defined hematopoietic populations, such as HSC, B-cells, T-cells, myeloid cells and erythroid cells. This strategy can be further potentiated by merging the use of two-photon microscopy of the calvarium. By providing in vivo high resolution imaging and 3-D rendering of the BM calvarium, we can now determine precisely the location where specific hematopoietic subsets home in the BM and evaluate the kinetics of their expansion over time. Here, Lys-GFP transgenic mice (marking myeloid cells)9 and RBPJ knock-out mice (lacking canonical Notch signaling)10 are used in combination with IVFM to determine the engraftment of myeloid cells to a Notch defective BM microenvironment.Item Endotoxin Preconditioning Reprograms S1 Tubules and Macrophages to Protect the Kidney(American Society of Nephrology, 2018-01) Hato, Takashi; Zollman, Amy; Plotkin, Zoya; El-Achkar, Tarek M.; Maier, Bernhard F.; Pay, S. Louise; Dube, Shataakshi; Cabral, Pablo; Yoshimoto, Momoko; McClintick, Jeanette; Dagher, Pierre C.; Medicine, School of MedicinePreconditioning with a low dose of endotoxin confers unparalleled protection against otherwise lethal models of sepsis. The mechanisms of preconditioning have been investigated extensively in isolated immune cells such as macrophages. However, the role of tissue in mediating the protective response generated by preconditioning remains unknown. Here, using the kidney as a model organ, we investigated cell type-specific responses to preconditioning. Compared with preadministration of vehicle, endotoxin preconditioning in the cecal ligation and puncture mouse model of sepsis led to significantly enhanced survival and reduced bacterial load in several organs. Furthermore, endotoxin preconditioning reduced serum levels of proinflammatory cytokines, upregulated molecular pathways involved in phagocytosis, and prevented the renal function decline and injury induced in mice by a toxic dose of endotoxin. The protective phenotype involved the clustering of macrophages around S1 segments of proximal tubules, and full renal protection required both macrophages and renal tubular cells. Using unbiased S1 transcriptomic and tissue metabolomic approaches, we identified multiple protective molecules that were operative in preconditioned animals, including molecules involved in antibacterial defense, redox balance, and tissue healing. We conclude that preconditioning reprograms macrophages and tubules to generate a protective environment, in which tissue health is preserved and immunity is controlled yet effective. Endotoxin preconditioning can thus be used as a discovery platform, and understanding the role and participation of both tissue and macrophages will help refine targeted therapies for sepsis.Item Inflammation primes the kidney for recovery by activating AZIN1 A-to-I editing(bioRxiv, 2023-11-09) Heruye, Segewkal; Myslinski, Jered; Zeng, Chao; Zollman, Amy; Makino, Shinichi; Nanamatsu, Azuma; Mir, Quoseena; Janga, Sarath Chandra; Doud, Emma H.; Eadon, Michael T.; Maier, Bernhard; Hamada, Michiaki; Tran, Tuan M.; Dagher, Pierre C.; Hato, Takashi; Biochemistry and Molecular Biology, School of MedicineThe progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and Adenosine Deaminase isoform switching. We found that A-to-I editing of Antizyme Inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.Item Inflammation primes the murine kidney for recovery by activating AZIN1 adenosine-to-inosine editing(American Society for Clinical Investigation, 2024-09-03) Heruye, Segewkal Hawaze; Myslinski, Jered; Zeng, Chao; Zollman, Amy; Makino, Shinichi; Nanamatsu, Azuma; Mir, Quoseena; Janga, Sarath Chandra; Doud, Emma H.; Eadon, Michael T.; Maier, Bernhard; Hamada, Michiaki; Tran, Tuan M.; Dagher, Pierre C.; Hato, Takashi; Medicine, School of MedicineThe progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and adenosine deaminase isoform switching. We found that A-to-I editing of antizyme inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I-edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.Item Kidney intercalated cells are phagocytic and acidify internalized uropathogenic Escherichia coli(Springer Nature, 2021-04-23) Saxena, Vijay; Gao, Hongyu; Arregui, Samuel; Zollman, Amy; Kamocka, Malgorzata Maria; Xuei, Xiaoling; McGuire, Patrick; Hutchens, Michael; Hato, Takashi; Hains, David S.; Schwaderer, Andrew L.; Pediatrics, School of MedicineKidney intercalated cells are involved in acid-base homeostasis via vacuolar ATPase expression. Here we report six human intercalated cell subtypes, including hybrid principal-intercalated cells identified from single cell transcriptomics. Phagosome maturation is a biological process that increases in biological pathway analysis rank following exposure to uropathogenic Escherichia coli in two of the intercalated cell subtypes. Real time confocal microscopy visualization of murine renal tubules perfused with green fluorescent protein expressing Escherichia coli or pHrodo Green E. coli BioParticles demonstrates that intercalated cells actively phagocytose bacteria then acidify phagolysosomes. Additionally, intercalated cells have increased vacuolar ATPase expression following in vivo experimental UTI. Taken together, intercalated cells exhibit a transcriptional response conducive to the kidney’s defense, engulf bacteria and acidify the internalized bacteria. Intercalated cells represent an epithelial cell with characteristics of professional phagocytes like macrophages.Item Krüppel-like factor 6-mediated loss of BCAA catabolism contributes to kidney injury in mice and humans(National Academy of Sciences, 2021) Piret, Sian E.; Guo, Yiqing; Attallah, Ahmed A.; Horne, Sylvia J.; Zollman, Amy; Owusu, Daniel; Henein, Justina; Sidorenko, Viktoriya S.; Revelo, Monica P.; Hato, Takashi; Ma’ayan, Avi; He, John Cijiang; Mallipattu, Sandeep K.; Medicine, School of MedicineThe kidney proximal tubule is particularly susceptible to acute injury, which results in loss of fatty acid oxidation (FAO), their primary energy source. Here, we show that loss of the transcription factor KLF6 specifically in the proximal tubule in mice protects against acute injury and fibrosis, with preservation of transcripts that mediate branched-chain amino acid (BCAA) catabolism, which were down-regulated in injured control mice. BCAA may provide tricarboxylic acid cycle intermediates in the absence of FAO, and we show that loss of BCAA catabolism in vitro resulted in decreased ATP production, while pharmacological activation of BCAA catabolism increased mitochondrial oxygen consumption. Thus, preservation of BCAA catabolism may be a possible therapeutic target in acute kidney injury.Item Krüppel-like factor 6–mediated loss of BCAA catabolism contributes to kidney injury in mice and humans(National Academy of Sciences, 2021-06-08) Piret, Sian E.; Guo, Yiqing; Attallah, Ahmed A.; Horne, Sylvia J.; Zollman, Amy; Owusu, Daniel; Henein, Justina; Sidorenko, Viktoriya S.; Revelo, Monica P.; Hato, Takashi; Ma’ayan, Avi; He, John Cijiang; Mallipattu, Sandeep K.; Medicine, School of MedicineAltered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.