- Browse by Author
Browsing by Author "Zillikens, M. Carola"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Disentangling the genetics of lean mass(Oxford University Press, 2019-02-01) Karasik, David; Zillikens, M. Carola; Hsu, Yi-Hsiang; Aghdassi, Ali; Akesson, Kristina; Amin, Najaf; Barroso, Inês; Bennett, David A.; Bertram, Lars; Bochud, Murielle; Borecki, Ingrid B.; Broer, Linda; Buchman, Aron S.; Byberg, Liisa; Campbell, Harry; Campos-Obando, Natalia; Cauley, Jane A.; Cawthon, Peggy M.; Chambers, John C.; Chen, Zhao; Cho, Nam H.; Choi, Hyung Jin; Chou, Wen-Chi; Cummings, Steven R.; De Groot, Lisette C. P. G. M.; De Jager, Phillip L.; Demuth, Ilja; Diatchenko, Luda; Econs, Michael J.; Eiriksdottir, Gudny; Enneman, Anke W.; Eriksson, Joel; Eriksson, Johan G.; Estrada, Karol; Evans, Daniel S.; Feitosa, Mary F.; Fu, Mao; Gieger, Christian; Grallert, Harald; Gudnason, Vilmundur; Lenore, Launer J.; Hayward, Caroline; Hofman, Albert; Homuth, Georg; Huffman, Kim M.; Husted, Lise B.; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Johnson, Toby; Biffar, Reiner; Jordan, Joanne M.; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O.; Klopp, Norman; Kloth, Jacqueline S. L.; Koller, Daniel L.; Kooner, Jaspal S.; Kraus, William E.; Kritchevsky, Stephen; Kutalik, Zoltán; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L.; Lerch, Markus M.; Lewis, Joshua R.; Lill, Christina; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Livshits, Gregory; Ljunggren, Östen; Loos, Ruth J. F.; Lorentzon, Mattias; Luan, Jian'an; Luben, Robert N.; Malkin, Ida; McGuigan, Fiona E.; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Michaëlsson, Karl; Mitchell, Braxton D.; Morris, Andrew P.; Mosekilde, Leif; Nethander, Maria; Newman, Anne B.; O'Connell, Jeffery R.; Oostra, Ben A.; Orwoll, Eric S.; Palotie, Aarno; Peacock, Munro; Perola, Markus; Peters, Annette; Prince, Richard L.; Psaty, Bruce M.; Räikkönen, Katri; Ralston, Stuart H.; Ripatti, Samuli; Rivadeneira, Fernando; Robbins, John A.; Rotter, Jerome I.; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schipf, Sabine; Shin, Chan Soo; Smith, Albert V.; Smith, Shad B.; Soranzo, Nicole; Spector, Timothy D.; Stančáková, Alena; Stefansson, Kari; Steinhagen-Thiessen, Elisabeth; Stolk, Lisette; Streeten, Elizabeth A.; Styrkarsdottir, Unnur; Swart, Karin M. A.; Thompson, Patricia; Thomson, Cynthia A.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J.; Uitterlinden, André G.; Van Duijn, Cornelia M.; Van Schoor, Natasja M.; Vandenput, Liesbeth; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Wareham, Nicholas J.; Waterworth, Dawn; Weedon, Michael N.; Wichmann, H-Erich.; Widen, Elisabeth; Williams, Frances M. K.; Wilson, James F.; Wright, Nicole C.; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Zhou, Yanhua; Nielson, Carrie M.; Harris, Tamara B.; Demissie, Serkalem; Kiel, Douglas P.; Ohlsson, Claes; Medicine, School of MedicineBackground: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.Item Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels(Nature Publishing Group, 2018-01-17) Jiang, Xia; O’Reilly, Paul F.; Aschard, Hugues; Hsu, Yi-Hsiang; Richards, J. Brent; Dupuis, Josée; Ingelsson, Erik; Karasik, David; Pilz, Stefan; Berry, Diane; Kestenbaum, Bryan; Zheng, Jusheng; Luan, Jianan; Sofianopoulou, Eleni; Streeten, Elizabeth A.; Albanes, Demetrius; Lutsey, Pamela L.; Yao, Lu; Tang, Weihong; Econs, Michael J.; Wallaschofski, Henri; Völzke, Henry; Zhou, Ang; Power, Chris; McCarthy, Mark I.; Michos, Erin D.; Boerwinkle, Eric; Weinstein, Stephanie J.; Freedman, Neal D.; Huang, Wen-Yi; Van Schoor, Natasja M.; Velde, Nathalie van der; de Groot, Lisette C. P. G. M.; Enneman, Anke; Cupples, L. Adrienne; Booth, Sarah L.; Vasan, Ramachandran S.; Liu, Ching-Ti; Zhou, Yanhua; Ripatti, Samuli; Ohlsson, Claes; Vandenput, Liesbeth; Lorentzon, Mattias; Eriksson, Johan G.; Shea, M. Kyla; Houston, Denise K.; Kritchevsky, Stephen B.; Liu, Yongmei; Lohman, Kurt K.; Ferrucci, Luigi; Peacock, Munro; Gieger, Christian; Beekman, Marian; Slagboom, Eline; Deelen, Joris; Heemst, Diana van; Kleber, Marcus E.; März, Winfried; de Boer, Ian H.; Wood, Alexis C.; Rotter, Jerome I.; Rich, Stephen S.; Robinson-Cohen, Cassianne; Heijer, Martin den; Jarvelin, Marjo-Riitta; Cavadino, Alana; Joshi, Peter K.; Wilson, James F.; Hayward, Caroline; Lind, Lars; Michaëlsson, Karl; Trompet, Stella; Zillikens, M. Carola; Uitterlinden, Andre G.; Rivadeneira, Fernando; Broer, Linda; Zgaga, Lina; Campbell, Harry; Theodoratou, Evropi; Farrington, Susan M.; Timofeeva, Maria; Dunlop, Malcolm G.; Valdes, Ana M.; Tikkanen, Emmi; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Kähönen, Mika; Raitakari, Olli T.; Mikkilä, Vera; Ikram, M. Arfan; Sattar, Naveed; Jukema, J. Wouter; Wareham, Nicholas J.; Langenberg, Claudia; Forouhi, Nita G.; Gundersen, Thomas E.; Khaw, Kay-Tee; Butterworth, Adam S.; Danesh, John; Spector, Timothy; Wang, Thomas J.; Hyppönen, Elina; Kraft, Peter; Kiel, Douglas P.; Medicine, School of MedicineVitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7×10-9 at rs8018720 in SEC23A, and P = 1.9×10-14 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levelsItem Global guidance for the recognition, diagnosis, and management of tumor-induced osteomalacia(Wiley, 2023) Jan de Beur, Suzanne M.; Minisola, Salvatore; Xia, Wei-bo; Abrahamsen, Bo; Body, Jean-Jacques; Brandi, Maria Luisa; Clifton-Bligh, Roderick; Collins, Michael; Florenzano, Pablo; Houillier, Pascal; Imanishi, Yasuo; Imel, Erik A.; Khan, Aliya A.; Zillikens, M. Carola; Fukumoto, Seiji; Medicine, School of MedicineTumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by mesenchymal tumors that secrete fibroblast growth factor 23 (FGF23). Patients present with progressive bone pain, muscle weakness, and fragility fractures. TIO is characterized by hypophosphatemia, excess renal phosphate excretion, and low/inappropriately normal 1,25-dihydroxyvitamin D (1,25(OH)2 D) levels. Rarity and enigmatic clinical presentation of TIO contribute to limited awareness among the medical community. Accordingly, appropriate diagnostic tests may not be requested, leading to delayed diagnosis and poorer patient outcomes. We have developed a global guidance document to improve the knowledge of TIO in the medical community, enabling the recognition of patients with TIO and appropriate referral. We provide recommendations aiding diagnosis, referral, and treatment, helping promote a global standard of patient management. We reviewed the literature and conducted a three-round Delphi survey of TIO experts. Statements were drafted based on published evidence and expert opinions (≥70% consensus required for final recommendations). Serum phosphate should be measured in patients presenting with chronic muscle pain or weakness, fragility fractures, or bone pain. Physical examination should establish features of myopathy and identify masses that could be causative tumors. Priority laboratory evaluations should include urine/serum phosphate and creatinine to assess renal tubular reabsorption of phosphate and TmP/GFR, alkaline phosphatase, parathyroid hormone, 25-hydroxyvitamin D, 1,25(OH)2 D, and FGF23. Patients with the clinical/biochemical suspicion of TIO should be referred to a specialist for diagnosis confirmation, and functional imaging should be used to localize causative tumor(s). Recommended treatment is tumor resection or, with unresectable/unidentifiable tumors, phosphate salts plus active vitamin D, or burosumab.Item Management of Aromatase Inhibitor-Associated Bone Loss (AIBL) in postmenopausal women with hormone sensitive breast cancer: Joint position statement of the IOF, CABS, ECTS, IEG, ESCEO IMS, and SIOG(Elsevier, 2017-06) Hadji, Peyman; Aapro, Matti S.; Body, Jean-Jacques; Gnant, Michael; Brandi, Maria Luisa; Reginster, Jean Yves; Zillikens, M. Carola; Glüer, Claus-C.; de Villiers, Tobie; Baber, Rod; Roodman, G. David; Cooper, Cyrus; Langdahl, Bente; Palacios, Santiago; Kanis, John; Al-Daghri, Nasser; Nogues, Xavier; Eriksen, Erik Fink; Kurth, Andreas; Rizzoli, Rene; Coleman, Robert E.; Department of Biochemistry & Molecular Biology, IU School of MedicineBackground Several guidelines have been reported for bone-directed treatment in women with early breast cancer (EBC) for averting fractures, particularly during aromatase inhibitor (AI) therapy. Recently, a number of studies on additional fracture related risk factors, new treatment options as well as real world studies demonstrating a much higher fracture rate than suggested by randomized clinical controlled trials (RCTs). Therefore, this updated algorithm was developed to better assess fracture risk and direct treatment as a position statement of several interdisciplinary cancer and bone societies involved in the management of AI-associated bone loss (AIBL). Patients and methods A systematic literature review identified recent advances in the management of AIBL. Results with individual agents were assessed based on trial design, size, follow-up, and safety. Results Several fracture related risk factors in patients with EBC were identified. Although, the FRAX algorithm includes fracture risk factors (RF) in addition to BMD, it does not seem to adequately address the effects of AIBL. Several antiresorptive agents can prevent and treat AIBL. However, concerns regarding compliance and long-term safety remain. Overall, the evidence for fracture prevention is strongest for denosumab 60 mg s.c. every 6 months. Additionally, recent studies as well as an individual patient data meta-analysis of all available randomized trial data support additional anticancer benefits from adjuvant bisphosphonate treatment in postmenopausal women with a 34% relative risk reduction in bone metastasis and 17% relative risk decrease in breast cancer mortality that needs to be taken into account when advising on management of AIBL. Conclusions In all patients initiating AI treatment, fracture risk should be assessed and recommendation with regard to exercise and calcium/vitamin D supplementation given. Bone-directed therapy should be given to all patients with a T-score<−2.0 or with a T-score of <–1.5 SD with one additional RF, or with ≥2 risk factors (without BMD) for the duration of AI treatment. Patients with T-score>−1.5 SD and no risk factors should be managed based on BMD loss during the first year and the local guidelines for postmenopausal osteoporosis. Compliance should be regularly assessed as well as BMD on treatment after 12 - 24 months. Furthermore, because of the decreased incidence of bone recurrence and breast cancer specific mortality, adjuvant bisphosphonates are recommended for all postmenopausal women at significant risk of disease recurrence.