- Browse by Author
Browsing by Author "Zhou, Shudi"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Converging Effects of Chronic Pain and Binge Alcohol Consumption on Anterior Insular Cortex Neurons Projecting to the Dorsolateral Striatum in Male Mice(Society for Neuroscience, 2024-04-17) Yin, Yuexi; Haggerty, David L.; Zhou, Shudi; Atwood, Brady K.; Sheets, Patrick L.; Pharmacology and Toxicology, School of MedicineChronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.Item Dissecting the Effects of Different Pain Modalities and Oxycodone on Prodynorphin Expressing Neurons in the Mouse Prelimbic Cortex(2022-11) Zhou, Shudi; Atwood, Brady K.; Sheets, Patrick L.; McKinzie, David L.; Truitt, William A.; Jin, XiaomingCurrently, changes to endogenous opioid circuits in various pain modalities, including surgical and neuropathic pain, remain unclear. Dynorphin, which is released by prodynorphin-expressing neurons (Pdyn+ neurons), is the endogenous opioid ligand to kappa opioid receptors (KOR). Moreover, a recent study has shown an increase in prodynorphin (Pdyn) mRNA expression in the prelimbic cortex (PL) in a mouse model of chronic pain. However, alterations in the activity of PL Pdyn-expressing neurons (PLPdyn+ neurons) in postoperative and chronic pain have never been explored. Firstly, I found that the population of PLPdyn+ neurons consists of both pyramidal and inhibitory subtypes. Secondly, I found that one day after surgical incision of the mouse hind paw, the excitability of pyramidal PLPdyn+ neurons was increased in both male and female mice, while the excitability of inhibitory PLPdyn+ neurons was unchanged. However, when postoperative pain behavior subsided, inhibitory PLPdyn+ neurons were hyperexcitable in male mice, while pyramidal PLPdyn+ neurons were hypoexcitable in female mice. Lastly, I dissected electrophysiological changes to PLPdyn+ neurons in the spared nerve injury (SNI) model of chronic neuropathic pain. At both early and late stages of SNI pain development, increased excitability of pyramidal PLPdyn+ neurons was detected in both male and female mice. However, in both male and female mice, the excitability of inhibitory PLPdyn+ neurons decreased 3 days after SNI but was conversely increased when measured 14 days after SNI. My findings suggest that different subtypes of PLPdyn+ neurons manifest distinct alterations in the development of different pain modalities in a sex-specific manner.Item Gpr17 deficiency in POMC neurons ameliorates the metabolic derangements caused by long-term high-fat diet feeding(Springer Nature, 2019-10-14) Reilly, Austin M.; Zhou, Shudi; Panigrahi, Sunil K.; Yan, Shijun; Conley, Jason M.; Sheets, Patrick L.; Wardlaw, Sharon L.; Ren, Hongxia; Medicine, School of MedicineBACKGROUND: Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) control energy homeostasis by sensing hormonal and nutrient cues and activating secondary melanocortin sensing neurons. We identified the expression of a G protein-coupled receptor, Gpr17, in the ARH and hypothesized that it contributes to the regulatory function of POMC neurons on metabolism. METHODS: In order to test this hypothesis, we generated POMC neuron-specific Gpr17 knockout (PGKO) mice and determined their energy and glucose metabolic phenotypes on normal chow diet (NCD) and high-fat diet (HFD). RESULTS: Adult PGKO mice on NCD displayed comparable body composition and metabolic features measured by indirect calorimetry. By contrast, PGKO mice on HFD demonstrated a sexually dimorphic phenotype with female PGKO mice displaying better metabolic homeostasis. Notably, female PGKO mice gained significantly less body weight and adiposity (p < 0.01), which was associated with increased energy expenditure, locomotor activity, and respiratory quotient, while males did not have an overt change in energy homeostasis. Though PGKO mice of both sexes had comparable glucose and insulin tolerance, detailed analyses of liver gene expression and serum metabolites indicate that PGKO mice could have reduced gluconeogenesis and increased lipid utilization on HFD. To elucidate the central-based mechanism(s) underlying the better-preserved energy and glucose homeostasis in PGKO mice on HFD, we examined the electrophysiological properties of POMC neurons and found Gpr17 deficiency led to increased spontaneous action potentials. Moreover, PGKO mice, especially female knockouts, had increased POMC-derived alpha-melanocyte stimulating hormone and beta-endorphin despite a comparable level of prohormone POMC in their hypothalamic extracts. CONCLUSIONS: Gpr17 deficiency in POMC neurons protects metabolic homeostasis in a sex-dependent manner during dietary and aging challenges, suggesting that Gpr17 could be an effective anti-obesity target in specific populations with poor metabolic control.Item Mouse models of surgical and neuropathic pain produce distinct functional alterations to prodynorphin expressing neurons in the prelimbic cortex(Elsevier, 2023-02-13) Zhou, Shudi; Yin, Yuexi; Sheets, Patrick L.; Pharmacology and Toxicology, School of MedicineThe medial prefrontal cortex (mPFC) consists of a heterogeneous population of neurons that respond to painful stimuli, and our understanding of how different pain models alter these specific mPFC cell types remains incomplete. A distinct subpopulation of mPFC neurons express prodynorphin (Pdyn+), the endogenous peptide agonist for kappa opioid receptors (KORs). Here, we used whole cell patch clamp for studying excitability changes to Pdyn expressing neurons in the prelimbic region of the mPFC (PLPdyn+ neurons) in mouse models of surgical and neuropathic pain. Our recordings revealed that PLPdyn+ neurons consist of both pyramidal and inhibitory cell types. We find that the plantar incision model (PIM) of surgical pain increases intrinsic excitability only in pyramidal PLPdyn+ neurons one day after incision. Following recovery from incision, excitability of pyramidal PLPdyn+ neurons did not differ between male PIM and sham mice, but was decreased in PIM female mice. Moreover, the excitability of inhibitory PLPdyn+ neurons was increased in male PIM mice, but was with no difference between female sham and PIM mice. In the spared nerve injury model (SNI), pyramidal PLPdyn+ neurons were hyperexcitable at both 3 days and 14 days after SNI. However, inhibitory PLPdyn+ neurons were hypoexcitable at 3 days but hyperexcitable at 14 days after SNI. Our findings suggest different subtypes of PLPdyn+ neurons manifest distinct alterations in the development of different pain modalities and are regulated by surgical pain in a sex-specific manner. Our study provides information on a specific neuronal population that is affected by surgical and neuropathic pain.Item Sphingosine-1-phosphate receptor 1 agonist SEW2871 alters membrane properties of late-firing somatostatin expressing neurons in the central lateral amygdala(Elsevier, 2022) Mork, Briana E.; Lamerand, Sydney R.; Zhou, Shudi; Taylor, Bradley K.; Sheets, Patrick L.; Pharmacology and Toxicology, School of MedicineSphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide spectrum of biological processes including apoptosis, immune response and inflammation. Here, we sought to understand how S1P signaling affects neuronal excitability in the central amygdala (CeA), which is a brain region associated with fear learning, aversive memory, and the affective dimension of pain. Because the G-protein coupled S1P receptor 1 (S1PR1) has been shown to be the primary mediator of S1P signaling, we utilized S1PR1 agonist SEW2871 and S1PR1 antagonist NIBR to determine a potential role of S1PR1 in altering the cellular physiology of neurons in the lateral division of the CeA (CeL) that share the neuronal lineage marker somatostatin (Sst). CeL-Sst neurons play a critical role in expression of conditioned fear and pain modulation. Here we used transgenic breeding strategies to identify fluorescently labeled CeL-Sst neurons for electrophysiological recordings. Using principal component analysis, we identified two primary subtypes of Sst neurons within the CeL in both male and female mice. We denoted the two types regular-firing (type A) and late-firing (type B) CeL-Sst neurons. In response to SEW2871 application, Type A neurons exhibited increased input resistance, while type B neurons displayed a depolarized resting membrane potential and voltage threshold, increased current threshold, and decreased voltage height. NIBR application had no effect on CeL Sst neurons, indicating the absence of tonic S1P-induced S1PR1. Our findings reveal subtypes of Sst neurons within the CeL that are uniquely affected by S1PR1 activation, which may have implications for how S1P alters supraspinal circuits.Item Ventromedial hypothalamic nucleus subset stimulates tissue thermogenesis via preoptic area outputs(Elsevier, 2024) Basu, Rashmita; Elmendorf, Andrew J.; Lorentz, Betty; Mahler, Connor A.; Lazzaro, Olivia; App, Britany; Zhou, Shudi; Yamamoto, Yura; Suber, Mya; Wann, Jamie C.; Cheol Roh, Hyun; Sheets, Patrick L.; Johnson, Travis S.; Flak, Jonathan N.; Pharmacology and Toxicology, School of MedicineObjective: Hypothalamic signals potently stimulate energy expenditure by engaging peripheral mechanisms to restore energy homeostasis. Previous studies have identified several critical hypothalamic sites (e.g. preoptic area (POA) and ventromedial hypothalamic nucleus (VMN)) that could be part of an interconnected neurocircuit that controls tissue thermogenesis and essential for body weight control. However, the key neurocircuit that can stimulate energy expenditure has not yet been established. Methods: Here, we investigated the downstream mechanisms by which VMN neurons stimulate adipose tissue thermogenesis. We manipulated subsets of VMN neurons acutely as well as chronically and studied its effect on tissue thermogenesis and body weight control, using Sf1Cre and Adcyap1Cre mice and measured physiological parameters under both high-fat diet and standard chow diet conditions. To determine the node efferent to these VMN neurons, that is involved in modulating energy expenditure, we employed electrophysiology and optogenetics experiments combined with measurements using tissue-implantable temperature microchips. Results: Activation of the VMN neurons that express the steroidogenic factor 1 (Sf1; VMNSf1 neurons) reduced body weight, adiposity and increased energy expenditure in diet-induced obese mice. This function is likely mediated, at least in part, by the release of the pituitary adenylate cyclase-activating polypeptide (PACAP; encoded by the Adcyap1 gene) by the VMN neurons, since we previously demonstrated that PACAP, at the VMN, plays a key role in energy expenditure control. Thus, we then shifted focus to the subpopulation of VMNSf1 neurons that contain the neuropeptide PACAP (VMNPACAP neurons). Since the VMN neurons do not directly project to the peripheral tissues, we traced the location of the VMNPACAP neurons' efferents. We identified that VMNPACAP neurons project to and activate neurons in the caudal regions of the POA whereby these projections stimulate tissue thermogenesis in brown and beige adipose tissue. We demonstrated that selective activation of caudal POA projections from VMNPACAP neurons induces tissue thermogenesis, most potently in negative energy balance and activating these projections lead to some similar, but mostly unique, patterns of gene expression in brown and beige tissue. Finally, we demonstrated that the activation of the VMNPACAP neurons' efferents that lie at the caudal POA are necessary for inducing tissue thermogenesis in brown and beige adipose tissue. Conclusions: These data indicate that VMNPACAP connections with the caudal POA neurons impact adipose tissue function and are important for induction of tissue thermogenesis. Our data suggests that the VMNPACAP → caudal POA neurocircuit and its components are critical for controlling energy balance by activating energy expenditure and body weight control.