- Browse by Author
Browsing by Author "Zhou, Baohua"
Now showing 1 - 10 of 22
Results Per Page
Sort Options
Item An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment(American Association for the Advancement of Science, 2022) Fu, Yongyao; Wang, Jocelyn; Zhou, Baohua; Pajulas, Abigail; Gao, Hongyu; Ramdas, Baskar; Koh, Byunghee; Ulrich, Benjamin J.; Yang, Shuangshuang; Kapur, Reuben; Renauld, Jean-Christophe; Paczesny, Sophie; Liu, Yunlong; Tighe, Robert M.; Licona-Limón, Paula; Flavell, Richard A.; Takatsuka, Shogo; Kitamura, Daisuke; Tepper, Robert S.; Sun, Jie; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineDespite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.Item Characterization of Allergen-Specific Immunoglubulin E Development in a Food Allergy Model and Its Regulation by T Follicular Helper and T Follicular Regulatory Cells(2023-05) Chen, Qiang; Dent, Alexander; Kaplan, Mark; Brutkiewicz, Randy; Zhou, BaohuaFood allergy is a highly prevalent and serious disease regulated by immunoglobin E (IgE) antibodies specific for food allergens.The development of IgE is regulated by T follicular helper cells (TFH) and T follicular regulatorycells (TFR) in the germinal center (GC). We aimed to understandthe regulation of IgEin the GC by TFH and TFR cellsusinga mouse food allergy model. We found that the dosage and timingof allergen delivery into thegut is criticalfor allergen-specific IgE development, in part because the timing of allergen delivery affected the expression of regulatory factors by TFH and TFR cells. We studied FGL2, an inhibitory factor, and found that down-regulation of FGL2 in TFH cells was important for the allergic IgEresponse. Apart from inhibitory factors, TFH cell-derived IL-4 is required for IgE responses. We unexpectedlyfound that TFR cells in food allergy produce comparable amountsof IL-4 to TFH cellsand IL-4–expressing TFR cells promoteallergen-specific IgEin food allergy. The IgE response is highly sensitive to IL-4 levels, suggesting the need for extra IL-4 from TFR cells. However,TFR cells have distinct functionsdepending on the immune environment, since TFR cells repress IgEinanairway inflammation model. We found that TFR cells in airway inflammation have a different gene expression profile from TFR cells in food allergy, whichmay explain their distinct functions. Lastly, previous studies showed that high-affinity IgE driving anaphylactic reactions is produced via IgG1-switchedintermediate B cells. We challenged this paradigm by showing that high-affinity IgE develops in the absence ofIgG1-switchedB cellsin our food allergy model.Overall, our studies reveal that IgE is regulated by novel pathways in food allergy. We hope to exploit these new pathways to develop new specific therapies for food allergy.Item FOXP3 exon 2 controls Treg stability and autoimmunity(American Association for the Advancement of Science, 2022) Du, Jianguang; Wang, Qun; Yang, Shuangshuang; Chen, Si; Fu, Yongyao; Spath, Sabine; Domeier, Phillip; Hagin, David; Anover-Sombke, Stephanie; Haouili, Maya; Liu, Sheng; Wan, Jun; Han, Lei; Liu, Juli; Yang, Lei; Sangani, Neel; Li, Yujing; Lu, Xiongbin; Janga, Sarath Chandra; Kaplan, Mark H.; Torgerson, Troy R.; Ziegler, Steven F.; Zhou, Baohua; Pediatrics, School of MedicineDiffering from the mouse Foxp3 gene that encodes only one protein product, human FOXP3 encodes two major isoforms through alternative splicing-a longer isoform (FOXP3 FL) containing all the coding exons and a shorter isoform lacking the amino acids encoded by exon 2 (FOXP3 ΔE2). The two isoforms are naturally expressed in humans, yet their differences in controlling regulatory T cell phenotype and functionality remain unclear. In this study, we show that patients expressing only the shorter isoform fail to maintain self-tolerance and develop immunodeficiency, polyendocrinopathy, and enteropathy X-linked (IPEX) syndrome. Mice with Foxp3 exon 2 deletion have excessive follicular helper T (TFH) and germinal center B (GC B) cell responses, and develop systemic autoimmune disease with anti-dsDNA and antinuclear autoantibody production, as well as immune complex glomerulonephritis. Despite having normal suppressive function in in vitro assays, regulatory T cells expressing FOXP3 ΔE2 are unstable and sufficient to induce autoimmunity when transferred into Tcrb-deficient mice. Mechanistically, the FOXP3 ΔE2 isoform allows increased expression of selected cytokines, but decreased expression of a set of positive regulators of Foxp3 without altered binding to these gene loci. These findings uncover indispensable functions of the FOXP3 exon 2 region, highlighting a role in regulating a transcriptional program that maintains Treg stability and immune homeostasis.Item FOXP3 interacts with hnRNPF to modulate pre-mRNA alternative splicing(American Society for Biochemistry and Molecular Biology, 2018-06-29) Du, Jianguang; Wang, Qun; Ziegler, Steven F.; Zhou, Baohua; Microbiology and Immunology, School of MedicineFOXP3 promotes the development and function of regulatory T cells mainly through regulating the transcription of target genes. RNA alternative splicing has been implicated in a wide range of physiological and pathophysiological processes. We report here that FOXP3 associates with heterogeneous nuclear ribonucleoprotein (hnRNP) F through the exon 2-encoded region of FOXP3 and the second quasi-RNA recognition motif (qRRM) of hnRNPF. FOXP3 represses the ability of hnRNPF to bind to its target pre-mRNA and thus modulates RNA alternative splicing. Furthermore, overexpression of mouse hnRNPF in in vitro-differentiated regulatory T cells (Tregs) reduced their suppressive function. Thus, our studies identify a novel mechanism by which FOXP3 regulates mRNA alternative splicing to modulate the function of regulatory T cells.Item IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow(Rockefeller University Press, 2018-01-02) Stier, Matthew T.; Zhang, Jian; Goleniewska, Kasia; Cephus, Jacqueline Y.; Rusznak, Mark; Wu, Lan; Kaer, Luc Van; Zhou, Baohua; Newcomb, Dawn C.; Peebles, R. Stokes, Jr.; Pediatrics, School of MedicineGroup 2 innate lymphoid cells (ILC2s) are effector cells within the mucosa and key participants in type 2 immune responses in the context of allergic inflammation and infection. ILC2s develop in the bone marrow from common lymphoid progenitor cells, but little is known about how ILC2s egress from the bone marrow for hematogenous trafficking. In this study, we identified a critical role for IL-33, a hallmark peripheral ILC2-activating cytokine, in promoting the egress of ILC2 lineage cells from the bone marrow. Mice lacking IL-33 signaling had normal development of ILC2s but retained significantly more ILC2 progenitors in the bone marrow via augmented expression of CXCR4. Intravenous injection of IL-33 or pulmonary fungal allergen challenge mobilized ILC2 progenitors to exit the bone marrow. Finally, IL-33 enhanced ILC2 trafficking to the lungs in a parabiosis mouse model of tissue disruption and repopulation. Collectively, these data demonstrate that IL-33 plays a critical role in promoting ILC2 egress from the bone marrow.Item IL-9 by INFERence(Elsevier, 2013-10-17) Zhou, Baohua; Kaplan, Mark H.; Department of Pediatrics, IU School of MedicineDespite discovery of the cytokine over 20 years ago, the relevant biological sources of IL-9 have remained a mystery. In this issue of Immunity, Licona-Limón et al. (2013) use a newly generated reporter mouse to demonstrate a role for IL-9-secreting T cells in helminthic parasite immunity.Item Interleukin-9 promotes mast cell progenitor proliferation and CCR2-dependent mast cell migration in allergic airway inflammation(Elsevier, 2023) Pajulas, Abigail; Fu, Yongyao; Cheung, Cherry C. L.; Chu, Michelle; Cannon, Anthony; Alakhras, Nada; Zhang, Jilu; Ulrich, Benjamin J.; Nelson, Andrew S.; Zhou, Baohua; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineAllergic asthma is a chronic lung disease characterized by airway hyperresponsiveness and cellular infiltration that is exacerbated by immunoglobulin E-dependent mast cell (MC) activation. Interleukin-9 (IL-9) promotes MC expansion during allergic inflammation but precisely how IL-9 expands tissue MCs and promotes MC function is unclear. In this report, using multiple models of allergic airway inflammation, we show that both mature MCs (mMCs) and MC progenitors (MCp) express IL-9R and respond to IL-9 during allergic inflammation. IL-9 acts on MCp in the bone marrow and lungs to enhance proliferative capacity. Furthermore, IL-9 in the lung stimulates the mobilization of CCR2+ mMC from the bone marrow and recruitment to the allergic lung. Mixed bone marrow chimeras demonstrate that these are intrinsic effects in the MCp and mMC populations. IL-9-producing T cells are both necessary and sufficient to increase MC numbers in the lung in the context of allergic inflammation. Importantly, T cell IL-9-mediated MC expansion is required for the development of antigen-induced and MC-dependent airway hyperreactivity. Collectively, these data demonstrate that T cell IL-9 induces lung MC expansion and migration by direct effects on the proliferation of MCp and the migration of mMC to mediate airway hyperreactivity.Item Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs(PLoS, 2015-02-03) Yang, Xiaowei; Zhu, Jingjing; Tung, Chun-Yu; Gardiner, Gail; Wang, Qun; Chang, Hua-Chen; Zhou, Baohua; Department of Pediatrics, IU School of MedicineLunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.Item Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9(Springer Nature, 2022-07-01) Fu, Yongyao; Pajulas, Abigail; Wang, Jocelyn; Zhou, Baohua; Cannon, Anthony; Cheung, Cherry Cheuk Lam; Zhang, Jilu; Zhou, Huaxin; Fisher, Amanda Jo; Omstead, David T.; Khan, Sabrina; Han, Lei; Renauld, Jean-Christophe; Paczesny, Sophie; Gao, Hongyu; Liu, Yunlong; Yang, Lei; Tighe, Robert M.; Licona-Limón, Paula; Flavell, Richard A.; Takatsuka, Shogo; Kitamura, Daisuke; Sun, Jie; Bilgicer, Basar; Sears, Catherine R.; Yang, Kai; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineAlthough IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.Item A New Itch to Scratch for TSLP(Elsevier, 2014-02) Turner, Matthew J.; Zhou, Baohua; Department of Pediatrics, IU School of MedicineAtopic dermatitis (AD) is characterized by allergic inflammation and itch. Thymic stromal lymphopoietin (TSLP) is a pro-allergic cytokine implicated in AD. A paper in Cell transforms the understanding of TSLP’s functional repertoire in general and in AD in particular showing that TSLP can directly stimulate sensory neurons and provoke itch.
- «
- 1 (current)
- 2
- 3
- »