- Browse by Author
Browsing by Author "Zhang, Yibo"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Radiation dimming and decreasing water clarity fuel underwater darkening in lakes(Elsevier, 2020-10) Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Zhang, Yibo; Deng, Jianming; Wild, Martin; Li, Lin; Zhou, Yongqiang; Yao, Xiaolong; Liu, Miao; Zhu, Guangwei; Zhang, Lu; Gu, Binhe; Brookes, Justin D.; Earth Sciences, School of ScienceLong-term decreases in the incident total radiation and water clarity might substantially affect the underwater light environment in aquatic ecosystems. However, the underlying mechanism and relative contributions of radiation dimming and decreasing water clarity to the underwater light environment on a national or global scale remains largely unknown. Here, we present a comprehensive dataset of unprecedented scale in China’s lakes to address the combined effects of radiation dimming and decreasing water clarity on underwater darkening. Long-term total radiation and sunshine duration showed 5.8% and 7.9% decreases, respectively, after 2000 compared to 1961–1970, resulting in net radiation dimming. An in situ Secchi disk depth (SDD) dataset in 170 lakes showed that the mean SDD significantly decreased from 1.80 ± 2.19 m before 1995 to 1.28 ± 1.82 m after 2005. SDD remote sensing estimations for 641 lakes with areas ≥ 10 km2 showed that SDD markedly decreased from 1.26 ± 0.62 m during 1985–1990 to 1.14 ± 0.66 m during 2005–2010. Radiation dimming and decreasing water clarity jointly caused an approximately 10% decrease in the average available photosynthetically active radiation (PAR) in the euphotic layer. Our results revealed a more important role of decreasing water clarity in underwater darkening than radiation dimming. A meta-analysis of long-term SDD observation data from 61 various waters further elucidated a global extensive underwater darkening. Underwater darkening implies a decrease in water quality for potable water supplies, recession in macrophytes and benthic algae, and decreases in benthic primary production, fishery production, and biodiversity.Item A semi-analytical model for estimating total suspended matter in highly turbid waters(Optical Society of America, 2018-12-24) Zhang, Yibo; Shi, Kun; Zhang, Yunlin; Moreno-Madrinan, Max J.; Li, Yuan; Li, Na; Environmental Health Science, School of Public HealthTotal suspended matter (TSM) is related to water quality. High TSM concentrations limit underwater light availability, thus affecting the primary productivity of aquatic ecosystems. Accurate estimation of TSM concentrations in various waters with remote sensing technology is particularly challenging, as the concentrations and optical properties vary greatly among different waters. In this research, a semi-analytical model was established for Hangzhou Bay and Lake Taihu for estimating TSM concentration. The model construction proceeded in two steps. 1) Two indices of the model were calculated by deriving absorption and backscattering coefficients of suspended matter (ap(λ) and bbp(λ)) from the reflectance signal using a semi-analytical method. 2) The two indices were then weighted to derive TSM. The performance of the proposed model was tested using in situ reflectance and Geostationary Ocean Color Imager (GOCI) data. The derived TSM based on in situ reflectance and GOCI images both corresponded well with the in situ TSM with low mean relative error (32%, 41%), root mean square error (20.1 mg/L, 43.1 mg/L), and normalized root mean square error (33%, 55%). The model was further used for the slightly turbid Xin’anjiang Reservoir to demonstrate its applicability to derive ap(λ) and bbp(λ) in other water types. The results indicated that the form Rrs −1(λ1) − Rrs −1(λ2) could minimize the effect of CDOM absorption in deriving ap(λ) from the total absorption. The model exploited the different relationships between TSM concentration and multiband reflectance, thus improving the performance and application range in deriving TSM.Item Water clarity response to climate warming and wetting of the Inner Mongolia-Xinjiang Plateau: A remote sensing approach(Elsevier, 2021-11) Zhang, Yibo; Shi, Kun; Zhang, Yunlin; Moreno-Madriñán, Max Jacobo; Xu, Xuan; Zhou, Yongqiang; Qin, Boqiang; Zhu, Guangwei; Jeppesen, Erik; Environmental Health Science, School of Public HealthWater clarity (generally quantified as the Secchi disk depth: SDD) is a key variable for assessing environmental changes in lakes. Using remote sensing we calculated and elucidated the SDD dynamics in lakes in the Inner Mongolia-Xinjiang Lake Zone (IMXL) from 1986 to 2018 in response to variations in temperature, rainfall, lake area, normalized difference vegetation index (NDVI) and Palmer's drought severity index (PDSI). The results showed that the lakes with high SDD values are primarily located in the Xinjiang region at longitudes of 75°–93° E. In contrast, the lakes in Inner Mongolia at longitudes of 93°–118° E generally have low SDD values. In total, 205 lakes show significant increasing SDD trends (P < 0.05), with a mean rate of 0.15 m per decade. In contrast, 75 lakes, most of which are located in Inner Mongolia, exhibited significant decreasing trends with a mean rate of 0.08 m per decade (P < 0.05). Pooled together, an overall increase is found with a mean rate of 0.14 m per decade. Multiple linear regression reveals that among the five variables selected to explain the variations in SDD, lake area accounts for the highest proportion of variance (25%), while temperature and rainfall account for 12% and 10%, respectively. In addition, rainfall accounts for 52% of the variation in humidity, 8% of the variation in lake area and 7% of the variation in NDVI. Temperature accounts for 27% of the variation in NDVI, 39% of the variation in lake area and 22% of the variation in PDSI. Warming and wetting conditions in IMXL thus promote the growth of vegetation and cause melting of glaciers and expansion of lake area, which eventually leads to improved water quality in the lakes in terms of higher SDD. In contrast, lakes facing more severe drought conditions, became more turbid.