- Browse by Author
Browsing by Author "Zhang, Kun"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project(American Physiological Society, 2021) El-Achkar, Tarek M.; Eadon, Michael T.; Menon, Rajasree; Lake, Blue B.; Sigdel, Tara K.; Alexandrov, Theodore; Parikh, Samir; Zhang, Guanshi; Dobi, Dejan; Dunn, Kenneth W.; Otto, Edgar A.; Anderton, Christopher R.; Carson, Jonas M.; Luo, Jinghui; Park, Chris; Hamidi, Habib; Zhou, Jian; Hoover, Paul; Schroeder, Andrew; Joanes, Marianinha; Azeloglu, Evren U.; Sealfon, Rachel; Winfree, Seth; Steck, Becky; He, Yongqun; D’Agati, Vivette; Iyengar, Ravi; Troyanskaya, Olga G.; Barisoni, Laura; Gaut, Joseph; Zhang, Kun; Laszik, Zoltan; Rovin, Brad H.; Dagher, Pierre C.; Sharma, Kumar; Sarwal, Minnie M.; Hodgin, Jeffrey B.; Alpers, Charles E.; Kretzler, Matthias; Jain, Sanjay; Medicine, School of MedicineComprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a “follow the tissue” pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.Item A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease(Nature, 2023-07-19) Canela, Victor Hugo; Bowen, William S.; Ferreira, Ricardo Melo; Syed, Farooq; Lingeman, James E.; Sabo, Angela R.; Barwinska, Daria; Winfree, Seth; Lake, Blue B.; Cheng, Ying-Hua; Gaut, Joseph P.; Ferkowicz, Michael; LaFavers, Kaice A.; Zhang, Kun; Coe, Fredric L.; Worcester, Elaine; Jain, Sanjay; Eadon, Michael T.; Williams, James C., Jr.; El-Achkar, Tarek M.; Urology, School of MedicineKidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.Item An atlas of healthy and injured cell states and niches in the human kidney(Springer Nature, 2023) Lake, Blue B.; Menon, Rajasree; Winfree, Seth; Hu, Qiwen; Ferreira, Ricardo Melo; Kalhor, Kian; Barwinska, Daria; Otto, Edgar A.; Ferkowicz, Michael; Diep, Dinh; Plongthongkum, Nongluk; Knoten, Amanda; Urata, Sarah; Mariani, Laura H.; Naik, Abhijit S.; Eddy, Sean; Zhang, Bo; Wu, Yan; Salamon, Diane; Williams, James C.; Wang, Xin; Balderrama, Karol S.; Hoover, Paul J.; Murray, Evan; Marshall, Jamie L.; Noel, Teia; Vijayan, Anitha; Hartman, Austin; Chen, Fei; Waikar, Sushrut S.; Rosas, Sylvia E.; Wilson, Francis P.; Palevsky, Paul M.; Kiryluk, Krzysztof; Sedor, John R.; Toto, Robert D.; Parikh, Chirag R.; Kim, Eric H.; Satija, Rahul; Greka, Anna; Macosko, Evan Z.; Kharchenko, Peter V.; Gaut, Joseph P.; Hodgin, Jeffrey B.; KPMP Consortium; Eadon, Michael T.; Dagher, Pierre C.; El-Achkar, Tarek M.; Zhang, Kun; Kretzler, Matthias; Jain, Sanjay; Medicine, School of MedicineUnderstanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.Item Caspases Switch off the m6A RNA Modification Pathway to Foster the Replication of a Ubiquitous Human Tumor Virus(American Society for Microbiology, 2021-08-31) Zhang, Kun; Zhang, Yucheng; Maharjan, Yunash; Sugiokto, Febri Gunawan; Wan, Jun; Li, Renfeng; Medical and Molecular Genetics, School of MedicineThe methylation of RNA at the N6 position of adenosine (m6A) orchestrates multiple biological processes to control development, differentiation, and cell cycle, as well as various aspects of the virus life cycle. How the m6A RNA modification pathway is regulated to finely tune these processes remains poorly understood. Here, we discovered the m6A reader YTHDF2 as a caspase substrate via proteome-wide prediction, followed by in vitro and in vivo validations. We further demonstrated that cleavage-resistant YTHDF2 blocks, while cleavage-mimicking YTHDF2 fragments promote, the replication of a common human oncogenic virus, Epstein-Barr virus (EBV). Intriguingly, our study revealed a feedback regulation between YTHDF2 and caspase-8 via m6A modification of CASP8 mRNA and YTHDF2 cleavage during EBV replication. Further, we discovered that caspases cleave multiple components within the m6A RNA modification pathway to benefit EBV replication. Our study establishes that caspase disarming of the m6A RNA modification machinery fosters EBV replication.Item The CYP3A5 genotypes of both liver transplant recipients and donors influence the time-dependent recovery of tacrolimus clearance during the early stage following transplantation(Wiley, 2021-10) Huang, Li; Assiri, Abdullah A.; Wen, Peihao; Zhang, Kun; Fan, Junwei; Xing, Tonghai; Liu, Yuan; Zhang, Jinyan; Wang, Zhaowen; Su, Zhaojie; Chen, Jiajia; Xiao, Yi; Wang, Rui; Na, Risi; Yuan, Liyun; Liu, Dehua; Xia, Junjie; Zhong, Lin; Liu, Wanqing; Guo, Wenzhi; Overholser, Brian R.; Peng, Zhihai; Medicine, School of MedicineItem A reference tissue atlas for the human kidney(American Association for the Advancement of Science, 2022) Hansen, Jens; Sealfon, Rachel; Menon, Rajasree; Eadon, Michael T.; Lake, Blue B.; Steck, Becky; Anjani, Kavya; Parikh, Samir; Sigdel, Tara K.; Zhang, Guanshi; Velickovic, Dusan; Barwinska, Daria; Alexandrov, Theodore; Dobi, Dejan; Rashmi, Priyanka; Otto, Edgar A.; Rivera, Miguel; Rose, Michael P.; Anderton, Christopher R.; Shapiro, John P.; Pamreddy, Annapurna; Winfree, Seth; Xiong, Yuguang; He, Yongqun; de Boer, Ian H.; Hodgin, Jeffrey B.; Barisoni, Laura; Naik, Abhijit S.; Sharma, Kumar; Sarwal, Minnie M.; Zhang, Kun; Himmelfarb, Jonathan; Rovin, Brad; El-Achkar, Tarek M.; Laszik, Zoltan; He, John Cijiang; Dagher, Pierre C.; Valerius, M. Todd; Jain, Sanjay; Satlin, Lisa M.; Troyanskaya, Olga G.; Kretzler, Matthias; Iyengar, Ravi; Azeloglu, Evren U.; Kidney Precision Medicine Project; Medicine, School of MedicineKidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.Item The chromatin landscape of healthy and injured cell types in the human kidney(Springer Nature, 2024-01-10) Gisch, Debora L.; Brennan, Michelle; Lake, Blue B.; Basta, Jeannine; Keller, Mark S.; Ferreira, Ricardo Melo; Akilesh, Shreeram; Ghag, Reetika; Lu, Charles; Cheng, Ying-Hua; Collins, Kimberly S.; Parikh, Samir V.; Rovin, Brad H.; Robbins, Lynn; Stout, Lisa; Conklin, Kimberly Y.; Diep, Dinh; Zhang, Bo; Knoten, Amanda; Barwinska, Daria; Asghari, Mahla; Sabo, Angela R.; Ferkowicz, Michael J.; Sutton, Timothy A.; Kelly, Katherine J.; De Boer, Ian H.; Rosas, Sylvia E.; Kiryluk, Krzysztof; Hodgin, Jeffrey B.; Alakwaa, Fadhl; Winfree, Seth; Jefferson, Nichole; Türkmen, Aydın; Gaut, Joseph P.; Gehlenborg, Nils; Phillips, Carrie L.; El-Achkar, Tarek M.; Dagher, Pierre C.; Hato, Takashi; Zhang, Kun; Himmelfarb, Jonathan; Kretzler, Matthias; Mollah, Shamim; Kidney Precision Medicine Project (KPMP); Jain, Sanjay; Rauchman, Michael; Eadon, Michael T.; Medicine, School of MedicineThere is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.