- Browse by Author
Browsing by Author "Yuan, Weiping"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia(Ferrata Storti Foundation, 2017-06) Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun; Pediatrics, School of MedicineFanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation.Item Combined loss of Tet1 and Tet2 promotes B-cell, but not myeloid malignancies in mice.(Elsevier, 2015-11-24) Zhao, Zhigang; Chen, Li; Dawlaty, Meelad M.; Pan, Feng; Weeks, Ophelia; Zhou, Yuan; Cao, Zeng; Shi, Hui; Wang, Jiapeng; Lin, Li; Chen, Shi; Yuan, Weiping; Qin, Zhaohui; Ni, Hongyu; Nimer, Stephen D.; Yang, Feng-Chun; Jaenisch, Rudolf; Jin, Peng; Xu, Mingjiang; Department of Pediatrics, IU School of MedicineTET1/2/3 are methylcytosine dioxygenases that regulate cytosine hydroxymethylation. Tet1/2 are abundantly expressed in HSC/HPCs and are implicated in hematological malignancies. Tet2-deletion in mice causes myeloid malignancies, while Tet1-null mice develop B-cell lymphoma after an extended period of latency. Interestingly, TET1/2 are often concomitantly downregulated in acute B-lymphocytic leukemia. Here, we investigated the overlapping and non-redundant functions of Tet1/2 in HSC maintenance and development of hematological malignancies using Tet1/2 double knockout (DKO) mice. DKO and Tet2−/− HSC/HPCs showed overlapping and unique 5hmC and 5mC profiles, and behaved differently. DKO mice exhibited strikingly decreased incidence and delayed-onset of myeloid malignancies compared to Tet2−/− mice, and in contrast developed lethal B-cell malignancies. Transcriptome analysis of DKO tumors revealed expression changes in many genes dysregulated in human B-cell malignancies, such as LMO2, BCL6 and MYC. These results highlight the critical roles of TET1/2 individually and together via communication in the pathogenesis of hematological malignancies.Item Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients(Springer Nature, 2014-05-15) Chang, Lixian; Yuan, Weiping; Zeng, Huimin; Zhou, Quanquan; Wei, Wei; Zhou, Jianfeng; Li, Miaomiao; Wang, Xiaomin; Xu, Mingjiang; Yang, Fengchun; Yang, Yungui; Cheng, Tao; Zhu, Xiaofan; Pediatrics, School of MedicineBackground: Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. Methods: We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Results: Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Conclusions: Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.