- Browse by Author
Browsing by Author "Young, Alex P."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item D-cysteine ethyl ester and D-cystine dimethyl ester reverse the deleterious effects of morphine on arterial blood-gas chemistry and Alveolar-arterial gradient in anesthetized rats(Elsevier, 2022) Getsy, Paulina M.; Young, Alex P.; Grossfield, Alan; Seckler, James M.; Wilson, Christopher G.; Gaston, Benjamin; Bates, James N.; Lewis, Stephen J.; Pediatrics, School of MedicineWe determined whether intravenous injections of the membrane-permeable ventilatory stimulants, D-cysteine ethyl ester (ethyl (2 S)– 2-amino-3-sulfanylpropanoate) (D-CYSee) and D-cystine dimethyl ester (methyl (2 S)– 2-amino-3-[[(2 S)– 2-amino-3-methoxy-3-oxopropyl]disulfanyl] propanoate) (D-CYSdime), could overcome the deleterious actions of intravenous morphine on arterial blood pH, pCO2, pO2 and sO2, and Alveolar-arterial (A-a) gradient (i.e., the measure of exchange of gases in the lungs) in Sprague Dawley rats anesthetized with isoflurane. Injection of morphine (2 mg/kg, IV) caused pronounced reductions in pH, pO2 and sO2 accompanied by elevations in pCO2, all which are suggestive of diminished ventilation, and elevations in A-a gradient, which suggests a mismatch of ventilation-perfusion. Subsequent boluses of D-cysteine ethyl ester (2 × 100 μmol/kg, IV) or D-cystine dimethyl ester (2 ×50 μmol/kg, IV) rapidly reversed of the negative actions of morphine on pH, pCO2, pO2 and sO2, and A-a gradient. Similar injections of D-cysteine (2 × 100 μmol/kg, IV) were without effect, whereas injections of D-cystine (2 × 50 μmol/kg, IV) produced a modest reversal. Our data show that D-cysteine ethyl ester and D-cystine dimethyl ester readily overcome the deleterious effects of morphine on arterial blood gas (ABG) chemistry and A-a gradient by mechanisms that may depend upon their ability to rapidly enter cells. As a result of their known ability to enter the brain, lungs, muscles of the chest wall, and most likely the major peripheral chemoreceptors (i.e., carotid bodies), the effects of the thiolesters on changes in ABG chemistry and A-a gradient elicited by morphine likely involve central and peripheral mechanisms. We are employing target prediction methods to identify an array of in vitro and in vivo methods to test potential functional proteins by which D-CYSee and D-CYSdime modulate the effects of morphine on breathing.Item D-Cysteine Ethyl Ester Reverses the Deleterious Effects of Morphine on Breathing and Arterial Blood-Gas Chemistry in Freely-Moving Rats(Frontiers Media, 2022-06-23) Getsy, Paulina M.; Baby, Santhosh M.; May, Walter J.; Young, Alex P.; Gaston, Benjamin; Hodges, Matthew R.; Forster, Hubert V.; Bates, James N.; Wilson, Christopher G.; Lewis, Tristan H.J.; Hsieh, Yee-Hee; Lewis, Stephen J.; Pediatrics, School of MedicineCell-penetrant thiol esters including the disulfides, D-cystine diethyl ester and D-cystine dimethyl ester, and the monosulfide, L-glutathione ethyl ester, prevent and/or reverse the deleterious effects of opioids, such as morphine and fentanyl, on breathing and gas exchange within the lungs of unanesthetized/unrestrained rats without diminishing the antinociceptive or sedative effects of opioids. We describe here the effects of the monosulfide thiol ester, D-cysteine ethyl ester (D-CYSee), on intravenous morphine-induced changes in ventilatory parameters, arterial blood-gas chemistry, alveolar-arterial (A-a) gradient (i.e., index of gas exchange in the lungs), and sedation and antinociception in freely-moving rats. The bolus injection of morphine (10 mg/kg, IV) elicited deleterious effects on breathing, including depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive. Subsequent injections of D-CYSee (2 × 500 μmol/kg, IV, given 15 min apart) elicited an immediate and sustained reversal of these effects of morphine. Morphine (10 mg/kg, IV) also A-a gradient, which caused a mismatch in ventilation perfusion within the lungs, and elicited pronounced changes in arterial blood-gas chemistry, including pronounced decreases in arterial blood pH, pO2 and sO2, and equally pronounced increases in pCO2 (all responses indicative of decreased ventilatory drive). These deleterious effects of morphine were immediately reversed by the injection of a single dose of D-CYSee (500 μmol/kg, IV). Importantly, the sedation and antinociception elicited by morphine (10 mg/kg, IV) were minimally affected by D-CYSee (500 μmol/kg, IV). In contrast, none of the effects of morphine were affected by administration of the parent thiol, D-cysteine (1 or 2 doses of 500 μmol/kg, IV). Taken together, these data suggest that D-CYSee may exert its beneficial effects via entry into cells that mediate the deleterious effects of opioids on breathing and gas exchange. Whether D-CYSee acts as a respiratory stimulant or counteracts the inhibitory actions of µ-opioid receptor activation remains to be determined. In conclusion, D-CYSee and related thiol esters may have clinical potential for the reversal of the adverse effects of opioids on breathing and gas exchange, while largely sparing antinociception and sedation.Item d-Cystine di(m)ethyl ester reverses the deleterious effects of morphine on ventilation and arterial blood gas chemistry while promoting antinociception(Springer Nature, 2021-05-11) Gaston, Benjamin; Baby, Santhosh M.; May, Walter J.; Young, Alex P.; Grossfield, Alan; Bates, James N.; Seckler, James M.; Wilson, Christopher G.; Lewis, Stephen J.; Pediatrics, School of MedicineWe have identified thiolesters that reverse the negative effects of opioids on breathing without compromising antinociception. Here we report the effects of d-cystine diethyl ester (d-cystine diEE) or d-cystine dimethyl ester (d-cystine diME) on morphine-induced changes in ventilation, arterial-blood gas chemistry, A-a gradient (index of gas-exchange in the lungs) and antinociception in freely moving rats. Injection of morphine (10 mg/kg, IV) elicited negative effects on breathing (e.g., depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive). Subsequent injection of d-cystine diEE (500 μmol/kg, IV) elicited an immediate and sustained reversal of these effects of morphine. Injection of morphine (10 mg/kg, IV) also elicited pronounced decreases in arterial blood pH, pO2 and sO2 accompanied by pronounced increases in pCO2 (all indicative of a decrease in ventilatory drive) and A-a gradient (mismatch in ventilation-perfusion in the lungs). These effects of morphine were reversed in an immediate and sustained fashion by d-cystine diME (500 μmol/kg, IV). Finally, the duration of morphine (5 and 10 mg/kg, IV) antinociception was augmented by d-cystine diEE. d-cystine diEE and d-cystine diME may be clinically useful agents that can effectively reverse the negative effects of morphine on breathing and gas-exchange in the lungs while promoting antinociception. Our study suggests that the d-cystine thiolesters are able to differentially modulate the intracellular signaling cascades that mediate morphine-induced ventilatory depression as opposed to those that mediate morphine-induced antinociception and sedation.Item S-nitroso-L-cysteine stereoselectively blunts the adverse effects of morphine on breathing and arterial blood gas chemistry while promoting analgesia(Elsevier, 2022) Getsy, Paulina M.; Young, Alex P.; Bates, James N.; Baby, Santhosh M.; Seckler, James M.; Grossfield, Alan; Hsieh, Yee-Hsee; Lewis, Tristan H.J.; Jenkins, Michael W.; Gaston, Benjamin; Lewis, Stephen J.; Pediatrics, School of MedicineS-nitrosothiols exert multiple effects on neural processes in the central and peripheral nervous system. This study shows that intravenous infusion of S-nitroso-L-cysteine (SNO-L-CYS, 1 μmol/kg/min) in anesthetized male Sprague Dawley rats elicits (a) sustained increases in minute ventilation, via increases in frequency of breathing and tidal volume, (b) a decrease in Alveolar-arterial (A-a) gradient, thus improving alveolar gas-exchange, (c) concomitant changes in arterial blood-gas chemistry, such as an increase in pO2 and a decrease in pCO2, (d) a decrease in mean arterial blood pressure (MAP), and (e) an increase in tail-flick (TF) latency (antinociception). Infusion of S-nitroso-D-cysteine (SNO-D-CYS, 1 μmol/kg/min, IV), did not elicit similar responses, except for a sustained decrease in MAP equivalent to that elicited by SNO-L-CYS. A bolus injection of morphine (2 mg/kg, IV) in rats receiving an infusion of vehicle elicited (a) sustained decreases in frequency of breathing tidal volume, and therefore minute ventilation, (b) a sustained decrease in MAP, (c) sustained decreases in pH, pO2 and maximal sO2 with sustained increases in pCO2 and A-a gradient, and (d) a sustained increase in TF latency. In rats receiving SNO-L-CYS infusion, morphine elicited markedly smaller changes in minute ventilation, arterial blood gas chemistry, A-a gradient and MAP. In contrast, the antinociceptive effects of morphine were enhanced in rats receiving the infusion of SNO-L-CYS. The morphine-induced responses in rats receiving SNO-D-CYS infusion were similar to vehicle-infused rats. These data are the first to demonstrate that infusion of an S-nitrosothiol, such as SNO-L-CYS, can stereoselectively ameliorate the adverse effects of morphine on breathing and alveolar gas exchange while promoting antinociception.