- Browse by Author
Browsing by Author "Young, Stephen"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Analytical and Clinical Sample Performance Characteristics of the Onclarity Assay for the Detection of Human Papillomavirus(American Society for Microbiology, 2020-12-17) Young, Stephen; Vaughan, Laurence; Yanson, Karen; Eckert, Karen; Li, Aojun; Harris, James; Ermel, Aaron; Williams, James A.; Al-Ghoul, Mohammad; Cammarata, Catherine L.; Taylor, Stephanie N.; Luff, Ronald; Cooper, Charles K.; Van Der Pol, Barbara; Medicine, School of MedicineThe objective of this study was to determine the result reproducibility and performance of the BD Onclarity human papillomavirus (HPV) assay (Onclarity) on the BD Viper LT platform using both contrived and clinical specimens. Reproducibility was assessed in BD SurePath liquid-based cytology (LBC) medium (SurePath) using contrived panels (HPV genotype 16 [HPV16] positive, HPV18 positive, or HPV45 positive) or clinical specimens (HPV16, -18, -31, -33/58, -45, or -52 positive or HPV negative). In addition, specimens from 3,879 individuals from the Onclarity trial were aliquoted prior to or following cytology processing and tested for HPV. Finally, specimens were collected using either the Cervex-Brush or Cytobrush (or Cytobrush/spatula) for comparison of HPV results. Contrived specimens showed >95% concordance with the expected results, and pooled clinical specimens had standard deviations and coefficients of variation ranging from 0.87 to 1.86 and 2.9% to 5.6%, respectively. For precytology and postcytology aliquot analyses, specimens showed >98.0% overall agreement and mean differences in cycle threshold (CT ) scores for HPV ranging from -0.07 to 0.31. Positivity rates were close between the Cervex-Brush and Cytobrush/spatula for all age groups tested. Onclarity results are reproducible and reliable, regardless of sample collection before or after cytology aliquoting. Onclarity performs well regardless of the method of specimen collection (Cervex-Brush or Cytobrush/spatula) for cervical cancer screening.Item Multicenter Clinical Evaluation of the Automated Aries Bordetella Assay(American Society for Microbiology, 2019-01-30) Relich, Ryan F.; Leber, Amy; Young, Stephen; Schutzbank, Ted; Dunn, Ronald; Farhang, Janet; Uphoff, Timothy S.; Pathology & Laboratory Medicine, IU School of MedicineMolecular methods offer superior sensitivity and specificity and reduce testing turnaround time from days to hours for detection of Bordetella pertussis and Bordetella parapertussis In this study, we evaluated the performance of the automated PCR-based Aries Bordetella Assay, which detects both B. pertussis and B. parapertussis directly from nasopharyngeal swab specimens. The limits of detection (LoDs) were 1,800 CFU·ml-1 for B. pertussis and 213 CFU·ml-1 for B. parapertussis The assay detected 16/18 unique B. pertussis/B. parapertussis strains. Of 71 potentially cross-reacting organisms, 5 generated false positives in 1/6 replicates; none of 6 additional Bordetella spp. were erroneously detected. Specimens were stable at 20 to 25°C for at least 10 h, at 4 to 8°C for 10 days, and at temperatures not exceeding -70°C for 6 months. Of 1,052 nasopharyngeal specimens from patients with suspected pertussis, 3.0% (n = 32) were B. pertussis positive and 0.2% (n = 2) were B. parapertussis positive. Combining these data with Aries Bordetella Assay data from 57 nasopharyngeal samples with previously confirmed B. pertussis or B. parapertussis data and with data from 50 contrived B. parapertussis samples, the proportions of positive and negative agreement of the respective Aries assays with the reference assays were 97.1% and 99.0% for B. pertussis and 100% and 99.7% for B. parapertussis The Aries Bordetella Assay provides accurate detection and distinction of B. pertussis and B. parapertussis infections within 2 h. (This study has been registered at ClinicalTrials.gov under registration no. NCT02862262.).Item Multicenter Evaluation of the Portrait Staph ID/R Blood Culture Panel for Rapid Identification of Staphylococci and Detection of the mecA Gene(American Society for Microbiology, 2017-04) Denys, Gerald A.; Collazo-Velez, Vanessa; Young, Stephen; Daly, Judy A.; Couturier, Marc Roger; Faron, Matthew L.; Buchan, Blake W.; Ledeboer, Nathan; Pathology and Laboratory Medicine, School of MedicineBloodstream infections are a leading cause of morbidity and mortality in the United States and are associated with increased health care costs. We evaluated the Portrait Staph ID/R blood culture panel (BCP) multiplex PCR assay (Great Basin Scientific, Salt Lake City, UT) for the rapid and simultaneous identification (ID) of Staphylococcus aureus, Staphylococcus lugdunensis, and Staphylococcus species to the genus level and the detection of the mecA gene directly from a positive blood culture bottle. A total of 765 Bactec bottles demonstrating Gram-positive cocci in singles or clusters were tested during the prospective trial at 3 clinical sites. The Portrait Staph ID/R BCP results were compared with results from conventional biochemical and cefoxitin disk methods performed at an independent laboratory. Discordant ID and mecA results were resolved by rpoB gene sequencing and mecA gene sequencing, respectively. A total of 658 Staphylococcus species isolates (S. aureus, 211 isolates; S. lugdunensis, 3 isolates; and Staphylococcus spp., 444 isolates) were recovered from monomicrobial and 33 polymicrobial blood cultures. After discrepant analysis, the overall ratios of Portrait Staph ID/R BCP positive percent agreement and negative percent agreement were 99.4%/99.9% for Staphylococcus ID and 99.7%/99.2% for mecA detection.Item Multicenter Evaluation of the QIAstat-Dx Respiratory Panel for the Detection of Viruses and Bacteria in Nasopharyngeal Swab Specimens(ASM, 2020-05) Leber, Amy L.; Lisby, Jan Gorm; Hansen, Glen; Relich, Ryan F.; Schneider, Uffe Vest; Granato, Paul; Young, Stephen; Pareja, Josep; Hannet, Irene; Pathology and Laboratory Medicine, School of MedicineThe QIAstat-Dx Respiratory Panel (QIAstat-Dx RP) is a multiplex in vitro diagnostic test for the qualitative detection of 20 pathogens directly from nasopharyngeal swab (NPS) specimens. The assay is performed using a simple sample-to-answer platform with results available in approximately 69 min. The pathogens identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus A and B, influenza A, influenza A H1, influenza A H3, influenza A H1N1/2009, influenza B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, rhinovirus/enterovirus, respiratory syncytial virus A and B, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. This multicenter evaluation provides data obtained from 1,994 prospectively collected and 310 retrospectively collected (archived) NPS specimens with performance compared to that of the BioFire FilmArray Respiratory Panel, version 1.7. The overall percent agreement between QIAstat-Dx RP and the comparator testing was 99.5%. In the prospective cohort, the QIAstat-Dx RP demonstrated a positive percent agreement of 94.0% or greater for the detection of all but four analytes: coronaviruses 229E, NL63, and OC43 and rhinovirus/enterovirus. The test also demonstrated a negative percent agreement of ≥97.9% for all analytes. The QIAstat-Dx RP is a robust and accurate assay for rapid, comprehensive testing for respiratory pathogens.