- Browse by Author
Browsing by Author "Yeh, Chien-Lin"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Association of exposure to manganese and fine motor skills in welders - Results from the WELDOX II study(Elsevier, 2021) Lotz, Anne; Pesch, Beate; Casjens, Swaantje; Lehnert, Martin; Zschiesche, Wolfgang; Taeger, Dirk; Yeh, Chien-Lin; Weiss, Tobias; Schmidt-Wilcke, Tobias; Quetscher, Clara; Gabriel, Stefan; Samis Zella, Maria Angela; Woitalla, Dirk; Dydak, Ulrike; van Thriel, Christoph; Brüning, Thomas; Behrens, Thomas; Radiology and Imaging Sciences, School of MedicineThe aim of this study was to evaluate the effect of exposure to manganese (Mn) on fine motor functions. A total of 48 welders and 30 unexposed workers as controls completed questionnaires, underwent blood examinations, and a motor test battery. The shift exposure of welders to respirable Mn was measured with personal samplers. For all subjects accumulations of Mn in the brain were assessed with T1-weighted magnetic resonance imaging. Welders showed normal motor functions on the Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale part III. Furthermore welders performed excellent on a steadiness test, showing better results than controls. However, welders were slightly slower than controls in motor tests. There was no association between fine motor test results and the relaxation rates R1 in globus pallidus and substantia nigra as MRI-based biomarkers to quantify Mn deposition in the brain.Item Association of exposure to manganese and iron with relaxation rates R1 and R2*- magnetic resonance imaging results from the WELDOX II study(Elsevier, 2017) Pesch, Beate; Dydak, Ulrike; Lotz, Anne; Casjens, Swaantje; Quetscher, Clara; Lehnert, Martin; Abramowski, Jessica; Stewig, Christoph; Yeh, Chien-Lin; Weiss, Tobias; van Thriel, Christoph; Herrmann, Lennard; Muhlack, Siegfried; Woitalla, Dirk; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Brüning, Thomas; Department of Radiology and Imaging Sciences, School of MedicineObjective Magnetic resonance imaging is a non-invasive method that allows the indirect quantification of manganese (Mn) and iron (Fe) accumulation in the brain due to their paramagnetic features. The WELDOX II study aimed to explore the influence of airborne and systemic exposure to Mn and Fe on the brain deposition using the relaxation rates R1 and R2* as biomarkers of metal accumulation in regions of interest in 161 men, including active and former welders. Material and methods We obtained data on the relaxation rates R1 and R2* in regions that included structures within the globus pallidus (GP), substantia nigra (SN), and white matter of the frontal lobe (FL) of both hemispheres, as well as Mn in whole blood (MnB), and serum ferritin (SF). The study subjects, all male, included 48 active and 20 former welders, 41 patients with Parkinson's disease (PD), 13 patients with hemochromatosis (HC), and 39 controls. Respirable Mn and Fe were measured during a working shift for welders. Mixed regression models were applied to estimate the effects of MnB and SF on R1 and R2*. Furthermore, we estimated the influence of airborne Mn and Fe on the relaxation rates in active welders. Results MnB and SF were significant predictors of R1 but not of R2* in the GP, and were marginally associated with R1 in the SN (SF) and FL (MnB). Being a welder or suffering from PD or HC elicited no additional group effect on R1 or R2* beyond the effects of MnB and SF. In active welders, shift concentrations of respirable Mn > 100 μg/m3 were associated with stronger R1 signals in the GP. In addition to the effects of MnB and SF, the welding technique had no further influence on R1. Conclusions MnB and SF were significant predictors of R1 but not of R2*, indicative of metal accumulation, especially in the GP. Also, high airborne Mn concentration was associated with higher R1 signals in this brain region. The negative results obtained for being a welder or for the techniques with higher exposure to ultrafine particles when the blood-borne concentration was included into the models indicate that airborne exposure to Mn may act mainly through MnB.Item Association of exposure to manganese and iron with striatal and thalamic GABA and other neurometabolites - Neuroimaging results from the WELDOX II study(Elsevier, 2018-01) Casjens, Swaantje; Dydak, Urike; Dharmadhikari, Shalmali; Lotz, Anne; Lehnert, Martin; Quetscher, Clara; Stewig, Christoph; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Edmondson, David; Yeh, Chien-Lin; Weiss, Tobias; van Thriel, Christoph; Herrmann, Lennard; Muhlack, Siegfried; Woitalla, Dirk; Aschner, Michael; Brüning, Thomas; Pesch, Beate; Radiology and Imaging Sciences, School of MedicineOBJECTIVE: Magnetic resonance spectroscopy (MRS) is a non-invasive method to quantify neurometabolite concentrations in the brain. Within the framework of the WELDOX II study, we investigated the association of exposure to manganese (Mn) and iron (Fe) with γ-aminobutyric acid (GABA) and other neurometabolites in the striatum and thalamus of 154 men. MATERIAL AND METHODS: GABA-edited and short echo-time MRS at 3T was used to assess brain levels of GABA, glutamate, total creatine (tCr) and other neurometabolites. Volumes of interest (VOIs) were placed into the striatum and thalamus of both hemispheres of 47 active welders, 20 former welders, 36 men with Parkinson's disease (PD), 12 men with hemochromatosis (HC), and 39 male controls. Linear mixed models were used to estimate the influence of Mn and Fe exposure on neurometabolites while simultaneously adjusting for cerebrospinal fluid (CSF) content, age and other factors. Exposure to Mn and Fe was assessed by study group, blood concentrations, relaxation rates R1 and R2* in the globus pallidus (GP), and airborne exposure (active welders only). RESULTS: The median shift exposure to respirable Mn and Fe in active welders was 23μg/m3 and 110μg/m3, respectively. Airborne exposure was not associated with any other neurometabolite concentration. Mn in blood and serum ferritin were highest in active and former welders. GABA concentrations were not associated with any measure of exposure to Mn or Fe. In comparison to controls, tCr in these VOIs was lower in welders and patients with PD or HC. Serum concentrations of ferritin and Fe were associated with N-acetylaspartate, but in opposed directions. Higher R1 values in the GP correlated with lower neurometabolite concentrations, in particular tCr (exp(β)=0.87, p<0.01) and choline (exp(β)=0.84, p=0.04). R2* was positively associated with glutamate-glutamine and negatively with myo-inositol. CONCLUSIONS: Our results do not provide evidence that striatal and thalamic GABA differ between Mn-exposed workers, PD or HC patients, and controls. This may be due to the low exposure levels of the Mn-exposed workers and the challenges to detect small changes in GABA. Whereas Mn in blood was not associated with any neurometabolite content in these VOIs, a higher metal accumulation in the GP assessed with R1 correlated with generally lower neurometabolite concentrations.Item Impairment of Motor Function Correlates with Neurometabolite and Brain Iron Alterations in Parkinson’s Disease(MDPI, 2019-01-29) Pesch, Beate; Casjens, Swaantje; Woitalla, Dirk; Dharmadhikari, Shalmali; Edmondson, David A.; Zella, Maria Angela Samis; Lehnert, Martin; Lotz, Anne; Herrmann, Lennard; Muhlack, Siegfried; Kraus, Peter; Yeh, Chien-Lin; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Gold, Ralf; van Thriel, Christoph; Brüning, Thomas; Tönges, Lars; Dydak, Ulrike; Department of Radiology and Imaging Sciences, Indiana University School of MedicineWe took advantage of magnetic resonance imaging (MRI) and spectroscopy (MRS) as non-invasive methods to quantify brain iron and neurometabolites, which were analyzed along with other predictors of motor dysfunction in Parkinson's disease (PD). Tapping hits, tremor amplitude, and the scores derived from part III of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS3 scores) were determined in 35 male PD patients and 35 controls. The iron-sensitive MRI relaxation rate R2* was measured in the globus pallidus and substantia nigra. γ-aminobutyric acid (GABA)-edited and short echo-time MRS was used for the quantification of neurometabolites in the striatum and thalamus. Associations of R2*, neurometabolites, and other factors with motor function were estimated with Spearman correlations and mixed regression models to account for repeated measurements (hands, hemispheres). In PD patients, R2* and striatal GABA correlated with MDS-UPDRS3 scores if not adjusted for age. Patients with akinetic-rigid PD subtype (N = 19) presented with lower creatine and striatal glutamate and glutamine (Glx) but elevated thalamic GABA compared to controls or mixed PD subtype. In PD patients, Glx correlated with an impaired dexterity when adjusted for covariates. Elevated myo-inositol was associated with more tapping hits and lower MDS-UPDRS3 scores. Our neuroimaging study provides evidence that motor dysfunction in PD correlates with alterations in brain iron and neurometabolites.Item Reversibility of Neuroimaging Markers Influenced by Lifetime Occupational Manganese Exposure(Oxford Academic, 2019-11) Edmondson, David A.; Ma, Ruoyun E.; Yeh, Chien-Lin; Ward, Eric; Snyder, Sandy; Azizi, Elham; Zauber, S Elizabeth; Wells, Ellen M.; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineManganese (Mn) is a neurotoxicant that many workers are exposed to daily. There is limited knowledge about how changes in exposure levels impact measures in magnetic resonance imaging (MRI). We hypothesized that changes in Mn exposure would be reflected by changes in the MRI relaxation rate R1 and thalamic γ-aminobutyric acid (GABAThal). As part of a prospective cohort study, 17 welders were recruited and imaged on 2 separate occasions approximately 2 years apart. MRI relaxometry was used to assess changes of Mn accumulation in the brain. Additionally, GABA was measured using magnetic resonance spectroscopy in the thalamic and striatal regions of the brain. Air Mn exposure ([Mn]Air) and cumulative exposure indexes of Mn (Mn-CEI) for the past 3 months (Mn-CEI3M), past year (Mn-CEI12M), and lifetime (Mn-CEILife) were calculated using personal air sampling and a comprehensive work history, whereas toenails were collected for analysis of internal Mn body burden. Finally, welders’ motor function was examined using the Unified Parkinson’s Disease Rating Scale (UPDRS). Median exposure decreased for all exposure measures between the first and second scan. ΔGABAThal was significantly correlated with ΔMn-CEI3M (ρ = 0.66, adjusted p = .02), ΔMn-CEI12M (ρ = 0.70, adjusted p = .006), and Δ[Mn]Air (ρ = 0.77, adjusted p = .002). ΔGABAThal significantly decreased linearly with ΔMn-CEI3M (quantile regression, β = 15.22, p = .02) as well as Δ[Mn]Air (β = 1.27, p = .04). Finally, Mn-CEILife interacted with Δ[Mn]Air in the substantia nigra where higher Mn-CEILife lessened the ΔR1 per Δ[Mn]Air (F-test, p = .005). Although R1 and GABA changed with Mn exposure, UPDRS was unaffected. In conclusion, our study shows that effects from changes in Mn exposure are reflected in thalamic GABA levels and brain Mn levels, as measured by R1, in most brain regions.Item Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information.(Elsevier, 2015-10-15) Dharmadhikari, Shalmali; Ma, Ruoyun; Yeh, Chien-Lin; Stock, Ann-Kathrin; Snyder, Sandy; Zauber, S. Elizabeth; Dydak, Ulrike; Beste, Christian; Department of Radiology and Imaging Sciences, IU School of MedicineThe selection of appropriate responses is a complex endeavor requiring the integration of many different sources of information in fronto-striatal-thalamic circuits. An often neglected but relevant piece of information is provided by proprioceptive inputs about the current position of our limbs. This study examines the importance of striatal and thalamic GABA levels in these processes using GABA-edited magnetic resonance spectroscopy (GABAMRS) and a Simon task featuring proprioception-induced interference in healthy subjects. As a possible model of deficits in the processing of proprioceptive information, we also included Parkinson's disease (PD) patients in this study.The results show that proprioceptive information about unusual postures complicates response selection processes in controls, but not in PD patients. The well-known deficits of PD patients in processing proprioceptive information can turn into a benefit when altered proprioceptive information would normally complicate response selection processes. Striatal and thalamic GABA levels play dissociable roles in the modulation of response selection processes by proprioceptive information: Striatal GABA levels seem to be important for the general speed of responding, most likely because striatal GABA promotes response selection. In contrast, the modulation of response conflict by proprioceptive information is closely related to thalamic GABA concentrations with higher concentration being related to a smaller response conflict effect. The most likely explanation for this finding is that the thalamus is involved in the integration of sensorimotor, attentional, and cognitive information for the purpose of response formation. Yet, this effect in the thalamus vanishes when controls and PD patients were analyzed separately.Item Thalamic GABA levels and Occupational Manganese Neurotoxicity: Association with Exposure Levels and Brain MRI(Elsevier, 2017) Ma, Ruoyun E.; Ward, Eric J.; Yeh, Chien-Lin; Snyder, Sandy; Long, Zaiyang; Yavuz, Fulya Gokalp; Zauber, S. Elizabeth; Dydak, Ulrike; Department of Neurology, School of MedicineExcessive occupational exposure to Manganese (Mn) has been associated with clinical symptoms resembling idiopathic Parkinson’s disease (IPD), impairing cognitive and motor functions. Several studies point towards an involvement of the brain neurotransmitter system in Mn intoxication, which is hypothesized to be disturbed prior to onset of symptoms. Edited Magnetic Resonance Spectroscopy (MRS) offers the unique possibility to measure γ-amminobutyric acid (GABA) and other neurometabolites in vivo non-invasively in workers exposed to Mn. In addition, the property of Mn as Magnetic Resonance Imaging (MRI) contrast agent may be used to study Mn deposition in the human brain. In this study, using MRI, MRS, personal air sampling at the working place, work history questionnaires, and neurological assessment (UPDRS-III), the effects of chronic Mn exposure on the thalamic GABAergic system was studied in a group of welders (N = 39) with exposure to Mn fumes in a typical occupational setting. Two subgroups of welders with different exposure levels (Low: N = 26; mean air Mn = 0.13 ± 0.1 mg/m3; High: N = 13; mean air Mn = 0.23 ± 0.18 mg/m3), as well as unexposed control workers (N = 22, mean air Mn = 0.002 ± 0.001 mg/m3) were recruited. The group of welders with higher exposure showed a significant increase of thalamic GABA levels by 45% (p < 0.01, F(1,33) = 9.55), as well as significantly worse performance in general motor function (p < 0.01, F(1,33) = 11.35). However, welders with lower exposure did not differ from the controls in GABA levels or motor performance. Further, in welders the thalamic GABA levels were best predicted by past-12-months exposure levels and were influenced by the Mn deposition in the substantia nigra and globus pallidus. Importantly, both thalamic GABA levels and motor function displayed a non-linear pattern of response to Mn exposure, suggesting a threshold effect.Item Whole-brain mapping of increased manganese levels in welders and its association with exposure and motor function(Elsevier, 2024) Monsivais, Humberto; Yeh, Chien-Lin; Edmondson, Alex; Harold, Roslyn; Snyder, Sandy; Wells, Ellen M.; Schmidt-Wilcke, Tobias; Foti, Dan; Zauber, S. Elizabeth; Dydak, Ulrike; Neurology, School of MedicineAlthough manganese (Mn) is a trace metal essential for humans, chronic exposure to Mn can cause accumulation of this metal ion in the brain leading to an increased risk of neurological and neurobehavioral health effects. This is a concern for welders exposed to Mn through welding fumes. While brain Mn accumulation in occupational settings has mostly been reported in the basal ganglia, several imaging studies also revealed elevated Mn in other brain areas. Since Mn functions as a magnetic resonance imaging (MRI) T1 contrast agent, we developed a whole-brain MRI approach to map in vivo Mn deposition differences in the brains of non-exposed factory controls and exposed welders. This is a cross-sectional analysis of 23 non-exposed factory controls and 36 exposed full-time welders from the same truck manufacturer. We collected high-resolution 3D MRIs of brain anatomy and R1 relaxation maps to identify regional differences using voxel-based quantification (VBQ) and statistical parametric mapping. Furthermore, we investigated the associations between excess Mn deposition and neuropsychological and motor test performance. Our results indicate that: (1) Using whole-brain MRI relaxometry methods we can generate excess Mn deposition maps in vivo, (2) excess Mn accumulation due to occupational exposure occurs beyond the basal ganglia in cortical areas associated with motor and cognitive functions, (3) Mn likely diffuses along white matter tracts in the brain, and (4) Mn deposition in specific brain regions is associated with exposure (cerebellum and frontal cortex) and motor metrics (cerebellum and hippocampus).Item Whole-brain R1 predicts manganese exposure and biological effects in welders(SpringerLink, 2020-10) Edmondson, David A.; Yeh, Chien-Lin; Hélie, Sébastien; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineManganese (Mn) is a neurotoxicant that, due to its paramagnetic property, also functions as a magnetic resonance imaging (MRI) T1 contrast agent. Previous studies in Mn toxicity have shown that Mn accumulates in the brain, which may lead to parkinsonian symptoms. In this article, we trained support vector machines (SVM) using whole-brain R1 (R1 = 1/T1) maps from 57 welders and 32 controls to classify subjects based on their air Mn concentration ([Mn]Air), Mn brain accumulation (ExMnBrain), gross motor dysfunction (UPDRS), thalamic GABA concentration (GABAThal), and total years welding. R1 was highly predictive of [Mn]Air above a threshold of 0.20 mg/m3 with an accuracy of 88.8% and recall of 88.9%. R1 was also predictive of subjects with GABAThal having less than or equal to 2.6 mM with an accuracy of 82% and recall of 78.9%. Finally, we used an SVM to predict age as a method of verifying that the results could be attributed to Mn exposure. We found that R1 was predictive of age below 48 years of age with accuracies ranging between 75 and 82% with recall between 94.7% and 76.9% but was not predictive above 48 years of age. Together, this suggests that lower levels of exposure (< 0.20 mg/m3 and < 18 years of welding on the job) do not produce discernable signatures, whereas higher air exposures and subjects with more total years welding produce signatures in the brain that are readily identifiable using SVM.