- Browse by Author
Browsing by Author "Ye, Michael J."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Aerosol and droplet generation from mandible and midface fixation: Surgical risk in the pandemic era(Elsevier, 2021-01) Ye, Michael J.; Sharma, Dhruv; Campiti, Vincent J.; Rubel, Kolin E.; Burgin, Sarah J.; Illing, Elisa A.; Ting, Jonathan Y.; Hong Park, Jae; Johnson, Jeffrey D.; Vernon, Dominic J.; Lee, Hui Bae; Nesemeier, B. Ryan; Shipchandler, Taha Z.; Otolaryngology -- Head and Neck Surgery, School of MedicinePurpose The COVID-19 pandemic has led to concerns over transmission risk from healthcare procedures, especially when operating in the head and neck such as during surgical repair of facial fractures. This study aims to quantify aerosol and droplet generation from mandibular and midface open fixation and measure mitigation of airborne particles by a smoke evacuating electrocautery hand piece. Materials and methods The soft tissue of the bilateral mandible and midface of two fresh frozen cadaveric specimens was infiltrated using a 0.1% fluorescein solution. Surgical fixation via oral vestibular approach was performed on each of these sites. Droplet splatter on the surgeon's chest, facemask, and up to 198.12 cm (6.5 ft) away from each surgical site was measured against a blue background under ultraviolet-A (UV-A) light. Aerosol generation was measured using an optical particle sizer. Results No visible droplet contamination was observed for any trials of mandible or midface fixation. Total aerosolized particle counts from 0.300–10.000 μm were increased compared to baseline following each use of standard electrocautery (n = 4, p < 0.001) but not with use of a suction evacuating electrocautery hand piece (n = 4, p = 0.103). Total particle counts were also increased during use of the powered drill (n = 8, p < 0.001). Conclusions Risk from visible droplets during mandible and midface fixation is low. However, significant increases in aerosolized particles were measured after electrocautery use and during powered drilling. Aerosol dispersion is significantly decreased with the use of a smoke evacuating electrocautery hand piece.Item Aerosol and droplet generation from orbital repair: Surgical risk in the pandemic era(Elsevier, 2021) Ye, Michael J.; Vadhul, Raghav B.; Sharma, Dhruv; Campiti, Vincent J.; Burgin, Sarah J.; Illing, Elisa A.; Ting, Jonathan Y.; Hong Park, Jae; Koehler, Karl R.; Lee, Hui Bae; Vernon, Dominic J.; Johnson, Jeffrey D.; Nesemeier, B. Ryan; Shipchandler, Taha Z.; Otolaryngology -- Head and Neck Surgery, School of MedicineIntroduction The highly contagious COVID-19 has resulted in millions of deaths worldwide. Physicians performing orbital procedures may be at increased risk of occupational exposure to the virus due to exposure to secretions. The goal of this study is to measure the droplet and aerosol production during repair of the inferior orbital rim and trial a smoke-evacuating electrocautery handpiece as a mitigation device. Material and methods The inferior rim of 6 cadaveric orbits was approached transconjunctivally using either standard or smoke-evacuator electrocautery and plated using a high-speed drill. Following fluorescein inoculation, droplet generation was measured by counting under ultraviolet-A (UV-A) light against a blue background. Aerosol generation from 0.300–10.000 μm was measured using an optical particle sizer. Droplet and aerosol generation was compared against retraction of the orbital soft tissue as a negative control. Results No droplets were observed following the orbital approach using electrocautery. Visible droplets were observed after plating with a high-speed drill for 3 of 6 orbits. Total aerosol generation was significantly higher than negative control following the use of standard electrocautery. Use of smoke-evacuator electrocautery was associated with significantly lower aerosol generation in 2 of 3 size groups and in total. There was no significant increase in total aerosols associated with high-speed drilling. Discussion and conclusions Droplet generation for orbital repair was present only following plating with high-speed drill. Aerosol generation during standard electrocautery was significantly reduced using a smoke-evacuating electrocautery handpiece. Aerosols were not significantly increased by high-speed drilling.Item Aerosol generation during cadaveric simulation of otologic surgery and live cochlear implantation(Wiley, 2021-02) Sharma, Dhruv; Campiti, Vincent J.; Ye, Michael J.; Saltagi, Mohamad; Carroll, Aaron E.; Ting, Jonathan Y.; Illing, Elisa A.; Park, Jae Hong; Nelson, Rick F.; Burgin, Sarah J.; Otolaryngology -- Head and Neck Surgery, School of MedicineObjective The risk of SARS‐CoV‐2 transmission to healthcare workers through airborne aerosolization during otologic surgery has not been characterized. The objective of this study was to describe and quantify the aerosol generation during common otologic procedures in both cadaveric surgical simulation and live patient surgery. Methods The number concentrations of generated aerosols in the particle size range of 0.30 to 10.0 μm were quantified using an optical particle sizer during both a cadaveric simulation of routine otologic procedures as well as cochlear implant surgery on live patients in the operating room. Results In the cadaveric simulation, temporalis fascia graft harvest using cold techniques (without electrocautery) (n = 4) did not generate aerosols above baseline concentrations. Tympanoplasty (n = 3) and mastoidectomy (n = 3) both produced statistically significant increases in concentrations of aerosols (P < 0.05), predominantly submicron particles (< 1.0 μm). High‐speed, powered drilling of the temporal bone during mastoidectomy with a Multi Flute cutting burr resulted in higher peak concentrations and greater number of spikes in aerosols than with a diamond burr. In the operating room, spikes in aerosols occurred during both cochlear implant surgeries. Conclusion In the cadaveric simulation, temporalis fascia graft harvest without electrocautery did not generate aerosol levels above baseline, while significant aerosol levels were generated during mastoidectomy and to a much less degree during tympanoplasty. Aerosol spikes were appreciated during cochlear implantation surgery in live patients.Item Aerosol generation during routine rhinologic surgeries and in-office procedures(Wiley, 2021-02) Sharma, Dhruv; Campiti, Vincent J.; Ye, Michael J.; Rubel, Kolin E.; Higgins, Thomas S.; Wu, Arthur W.; Shipchandler, Taha Z.; Burgin, Sarah J.; Sim, Michael W.; Illing, Elisa A.; Hong Park, Jae; Ting, Jonathan Y.; Otolaryngology -- Head and Neck Surgery, School of MedicineObjective Cadaveric simulations have shown endonasal drilling and cautery generate aerosols, which is a significant concern for otolaryngologists during the COVID‐19 era. This study quantifies aerosol generation during routine rhinologic surgeries and in‐office procedures in live patients. Methods Aerosols ranging from 0.30 to 10.0 μm were measured in real‐time using an optical particle sizer during surgeries and in‐office procedures. Various mask conditions were tested during rigid nasal endoscopy (RNE) and postoperative debridement (POD). Results Higher aerosol concentrations (AC) ranging from 2.69 to 10.0 μm were measured during RNE (n = 9) with no mask vs two mask conditions (P = .002 and P = .017). Mean AC (0.30‐10.0 μm) were significantly higher during POD (n = 9) for no mask vs a mask covering the patient's mouth condition (mean difference = 0.16 ± 0.03 particles/cm3, 95% CI 0.10‐0.22, P < .001). There were no discernible spikes in aerosol levels during endoscopic septoplasty (n = 3). Aerosol spikes were measured in two of three functional endoscopic sinus surgeries (FESS) with microdebrider. Using suction mitigation, there were no discernible spikes during powered drilling in two anterior skull base surgeries (ASBS). Conclusion Use of a surgical mask over the patient's mouth during in‐office procedures or a mask with a slit for an endoscope during RNE significantly diminished aerosol generation. However, whether this reduction in aerosol generation is sufficient to prevent transmission of communicable diseases via aerosols was beyond the scope of this study. There were several spikes in aerosols during FESS and ASBS, though none were associated with endonasal drilling with the use of suction mitigation.Item Association of Obstructive Sleep Apnea With Calvarial and Skull Base Thinning(American Medical Association, 2018-06-01) Rabbani, Cyrus; Saltagi, Mohamad Z.; Ye, Michael J.; Patel, Janaki M.; Manchanda, Shalini; Nelson, Rick F.; Otolaryngology -- Head and Neck Surgery, School of MedicineImportance: Spontaneous cerebrospinal fluid leaks (sCSF-L) of the temporal bone are associated with obesity, calvarial thinning, and obstructive sleep apnea (OSA), and the incidence has doubled in the past decade. It is currently unknown if OSA is independently associated with skull thinning. Objective: To determine if patients with OSA have thinner skulls than patients without OSA. Design, Setting, and Participants: A retrospective cohort study of patients who underwent a level 1 polysomnogram (PSG) and also had high-resolution computed tomographic (CT) imaging of the head from January 2010 to March 2017 at Indiana University was carried out. Patients with moderate to severe OSA (apnea-hypopnea index [AHI]≥25/h) and without OSA (AHI<5/h) were matched for age and body mass index (BMI, calculated as weight in kilograms divided by height in meters squared). Interventions: Measurement of calvarial thickness, extracranial zygoma thickness, skull base height and tegmen dehiscence (>4 mm) when blinded to OSA status. Main Outcomes and Measures: Primary outcomes were calvarial, skull base, and zygoma thickness differences between patients with OSA vs those without OSA. Results: A total of 22 933 patients had a PSG and 1012 also had head CT imaging. Of the 1012 patients with both PSG and CT, the mean (SD) age was 50.8 (16.2) years and 624 (61.7%) were women. Those patients with moderate to severe OSA (56) and without OSA (58) were matched for mean (SD) age (50.3 [6.5] vs 49.8 [6.1] years]) and BMI (37.4 [8.1] vs 38.6 [6.8]). Patients with OSA had thinner mean (SD) calvaria (2.73 [0.67] vs 2.47 [0.52] mm; difference, -0.26 mm; 95% CI, -0.49 to -0.04; Cohen d, 0.44) and thinner skull bases (5.03 [1.40] vs 4.32 [1.28] mm; difference, -0.71; 95% CI, -1.23 to -0.19; Cohen d, 0.53). The mean (SD) extracranial zygoma thickness was the same (4.92 [0.87] vs 4.84 [0.84] mm; difference, -0.07 mm; 95% CI, -0.39 to 0.24). The tegmen mastoideum was dehiscent in nearly twice as many patients with OSA as those without (37% vs 20%; difference, 17%; 95% CI, 0.4-32). Conclusions and Relevance: Obstructive sleep apnea was independently associated with intracranial bone (calvaria and skull base) thinning and not with extracranial (zygoma) thinning. These findings support a possible role of OSA in the pathophysiologic development of sCSF-L.Item Cadaveric Simulation of Endoscopic Endonasal Procedures: Analysis of Droplet Splatter Patterns During the COVID-19 Pandemic(SAGE Publications, 2020-05-19) Sharma, Dhruv; Rubel, Kolin E.; Ye, Michael J.; Shipchandler, Taha Z.; Wu, Arthur W.; Higgins, Thomas S.; Burgin, Sarah J.; Ting, Jonathan Y.; Illing, Elisa A.; Otolaryngology -- Head and Neck Surgery, School of MedicineObjective The primary mode of viral transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is thought to occur through the spread of respiratory droplets. The objective of this study was to investigate droplet and splatter patterns resulting from common endoscopic endonasal procedures. Study Design Cadaver simulation series. Setting Dedicated surgical laboratory. Subjects and Methods After instilling cadaver head specimens (n = 2) with fluorescein solution, endoscopic endonasal procedures were systematically performed to evaluate the quantity, size, and distance of droplets and splatter following each experimental condition. Results There were no observable fluorescein droplets or splatter noted in the measured surgical field in any direction after nasal endoscopy, septoplasty with microdebrider-assisted turbinoplasty, cold-steel functional endoscopic sinus surgery (FESS), and all experimental conditions using an ultrasonic aspirator. Limited droplet spread was noted with microdebrider FESS (2 droplets, <1 mm in size, within 10 cm), drilling of the sphenoid rostrum with a diamond burr (8, <1 mm, 12 cm), and drilling of the frontal beak with a cutting burr (5, <1 mm, 9 cm); however, the use of concurrent suction while drilling resulted in no droplets or splatter. The control condition of external activation of the drill resulted in gross contamination (11, 2 cm, 13 cm). Conclusion Our results indicate that there is very little droplet generation from routine rhinologic procedures. The droplet generation from drilling was mitigated with the use of concurrent suction. Extreme caution should be used to avoid activating powered instrumentation outside of the nasal cavity, which was found to cause droplet contamination.Item Cadaveric Simulation of Otologic Procedures: An Analysis of Droplet Splatter Patterns During the COIVD-19 Pandemic(SAGE Publications, 2020-05-19) Sharma, Dhruv; Rubel, Kolin E.; Ye, Michael J.; Carroll, Aaron E.; Ting, Jonathan Y.; Illing, Elisa A.; Burgin, Sarah J.; Campiti, Vincent J.; Otolaryngology -- Head and Neck Surgery, School of MedicineObjective. The otolaryngology community has significant concerns regarding the spread of SARS-CoV-2 through droplet contamination and viral aerosolization during head and neck examinations and procedures. The objective of this study was to investigate the droplet and splatter contamination from common otologic procedures. Study Design. Cadaver simulation series. Setting. Dedicated surgical laboratory. Methods. Two cadaver heads were prepped via bilateral middle cranial fossa approaches to the tegmen (n = 4). Fluorescein was instilled through a 4-mm burr hole drilled into the middle cranial fossa floor, and presence in the middle ear was confirmed via microscopic ear examination. Myringotomy with ventilation tube placement and mastoidectomy were performed, and the distribution and distance of resulting droplet splatter patterns were systematically evaluated. Results. There were no fluorescein droplets or splatter contamination observed in the measured surgical field in any direction after myringotomy and insertion of ventilation tube. Gross contamination from the surgical site to 6 ft was noted after complete mastoidectomy, though, when performed in standard fashion. Conclusion. Our results show that there is no droplet generation during myringotomy with ventilation tube placement in an operating room setting. Mastoidectomy, however, showed gross contamination 3 to 6 ft away in all directions measured. Additionally, there was significantly more droplet and splatter generation to the left of the surgeon when measured at 1 and 3 ft as compared with all other measured directions.Item Droplet Exposure Risk to Providers From In-Office Flexible Laryngoscopy: A COVID-19 Simulation(Sage, 2021-01) Ye, Michael J.; Sharma, Dhruv; Rubel, Kolin E.; Lebo, Nicole L.; Burgin, Sarah J.; Illing, Elisa A.; Ting, Jonathan Y.; Moore, Michael G.; Yesensky, Jessica A.; Mantravadi, Avinash V.; Sim, Michael W.; Otolaryngology -- Head and Neck Surgery, School of MedicineTo provide data on risk of respiratory droplets from common otolaryngologic procedures during the COVID-19 pandemic, a novel simulation of droplet exposure from flexible laryngoscopy was performed. After completion of a nasal symptom questionnaire, topical fluorescein spray was administered into the nasal and oropharynx of 10 healthy volunteers, who then underwent flexible laryngoscopy under 2 conditions: routine without provoked response and with prompted sneeze/cough. After each, droplets on the proceduralist and participant were counted under ultraviolet A light. Droplets were observed on 1 of 10 volunteers after routine laryngoscopy and 4 of 10 during laryngoscopy with sneeze/cough. A nasal symptom score based on congestion and rhinorrhea was significantly elevated among droplet producers after sneeze/cough (P = .0164). No droplets were observed on the provider. Overall, with adequate personal protective equipment, flexible laryngoscopy poses minimal droplet risk to providers. Nasal symptoms can identify patients more likely to produce droplets after sneeze/cough.Item Improved autologous cortical bone harvest and viability with 2Flute otologic burs(Wiley, 2018-01) Roth, Adam A.; Tang, Pei-Ciao; Ye, Michael J.; Mohammad, Khalid S.; Nelson, Rick F.; Otolaryngology -- Head and Neck Surgery, School of MedicineObjectives To determine if 2Flute (Stryker Corporation, Kalamazoo, MI) otologic burs improve the size, cellular content, and bone healing of autologous cortical bone grafts harvested during canal wall reconstruction (CWR) tympanomastoidectomy with mastoid obliteration. Study Design Institutional review board-approved prospective cohort study. Methods Human autologous cortical bone chips were harvested using various burs (4 and 6 mm diameter; multiflute, and 2Flute [Stryker Corporation]) from patients undergoing CWR tympanomastoidectomy for the treatment of chronic otitis media with cholesteatoma. Bone chip size, cell counts, cellular gene expression, and new bone formation were quantified. Results Bone chips were significantly larger when harvested with 2Flute (Stryker Corporation) bur compared to multiflute burs at both 6 mm diameter (113 ± 14 μm2 vs. 66 ± 8 μm2; P < 0.05) and 4 mm diameter (70 ± 8 μm2 vs. 50 ± 3 μm2; P < 0.05). After 2 weeks in culture, cell numbers were significantly higher when harvested with 2Flute (Stryker Corporation) bur compared to multiflute burs at both 6 mm diameter (48.7 ± 3 vs. 31.8 ± 3 cells/μg bone; P < 0.05) and 4 mm diameter (27.6 ± 1.2 vs. 8.8 ± 1.2 cells/μg bone; P < 0.05). Bone-derived cells express osteoblast markers (alkaline phosphatase, osteocalcin). Cultured cells are able to form new bone in culture, and bone formation is facilitated by the presence of bone chips. Conclusion Use of 2Flute (Stryker Corporation) otologic burs for human autologous cortical bone harvest results in more viable bone fragments, with larger bone chips and more osteoblasts. Future studies are needed to determine if this leads to improved bone healing.Item Mitigation of Aerosols Generated During Rhinologic Surgery: A Pandemic-Era Cadaveric Simulation(SAGE Publications, 2020-08-11) Sharma, Dhruv; Ye, Michael J.; Campiti, Vincent J.; Rubel, Kolin E.; Higgins, Thomas S.; Wu, Arthur W.; Shipchandler, Taha Z.; Sim, Michael W.; Burgin, Sarah J.; Illing, Elisa A.; Park, Jae Hong; Ting, Jonathan Y.; Otolaryngology -- Head and Neck Surgery, School of MedicineObjective: After significant restrictions initially due to the COVID-19 pandemic, otolaryngologists have begun resuming normal clinical practice. However, the risk of SARS-CoV2 transmission to health care workers through aerosolization and airborne transmission during rhinologic surgery remains incompletely characterized. The objective of this study was to quantify the number concentrations of aerosols generated during rhinologic surgery with and without interventions involving 3 passive suction devices. Study Design: Cadaver simulation. Setting: Dedicated surgical laboratory. Subjects and Methods: In a simulation of rhinologic procedures with and without different passive suction interventions, the concentrations of generated aerosols in the particle size range of 0.30 to 10.0 mm were quantified with an optical particle sizer. Results: Functional endoscopic sinus surgery with and without microdebrider, high-speed powered drilling, use of an ultrasonic aspirator, and electrocautery all produced statistically significant increases in concentrations of aerosols of various sizes (P \.05). Powered drilling, ultrasonic aspirator, and electrocautery generated the highest concentration of aerosols, predominantly submicroparticles \1 mm. All interventions with a suction device were effective in reducing aerosols, though the surgical smoke evacuation system was the most effective passive suction method in 2 of the 5 surgical conditions with statistical significance (P \.05). Conclusion. Significant aerosol concentrations were produced in the range of 0.30 to 10.0 mm during all rhinologic procedures in this cadaver simulation. Rhinologic surgery with a passive suction device results in significant mitigation of generated aerosols.