- Browse by Author
Browsing by Author "Yang, Jin"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Complex Arrhythmia Syndrome in a Knock-In Mouse Model Carrier of the N98S Calm1 Mutation(American Heart Association, 2020) Tsai, Wen-Chin; Guo, Shuai; Olaopa, Michael A.; Field, Loren J.; Yang, Jin; Shen, Changyu; Chang, Ching-Pin; Chen, Peng-Sheng; Rubart, Michael; Medicine, School of MedicineBackground: Calmodulin mutations are associated with arrhythmia syndromes in humans. Exome sequencing previously identified a de novo mutation in CALM1 resulting in a p.N98S substitution in a patient with sinus bradycardia and stress-induced bidirectional ventricular ectopy. The objectives of the present study were to determine if mice carrying the N98S mutation knocked into Calm1 replicate the human arrhythmia phenotype and to examine arrhythmia mechanisms. Methods: Mouse lines heterozygous for the Calm1N98S allele (Calm1N98S/+) were generated using CRISPR/Cas9 technology. Adult mutant mice and their wildtype littermates (Calm1+/+) underwent electrocardiographic monitoring. Ventricular de- and repolarization was assessed in isolated hearts using optical voltage mapping. Action potentials and whole-cell currents and [Ca2+]i, as well, were measured in single ventricular myocytes using the patch-clamp technique and fluorescence microscopy, respectively. The microelectrode technique was used for in situ membrane voltage monitoring of ventricular conduction fibers. Results: Two biologically independent knock-in mouse lines heterozygous for the Calm1N98S allele were generated. Calm1N98S/+ mice of either sex and line exhibited sinus bradycardia, QTc interval prolongation, and catecholaminergic bidirectional ventricular tachycardia. Male mutant mice also showed QRS widening. Pharmacological blockade and activation of β-adrenergic receptors rescued and exacerbated, respectively, the long-QT phenotype of Calm1N98S/+ mice. Optical and electric assessment of membrane potential in isolated hearts and single left ventricular myocytes, respectively, revealed β-adrenergically induced delay of repolarization. β-Adrenergic stimulation increased peak density, slowed inactivation, and left-shifted the activation curve of ICa.L significantly more in Calm1N98S/+ versus Calm1+/+ ventricular myocytes, increasing late ICa.L in the former. Rapidly paced Calm1N98S/+ ventricular myocytes showed increased propensity to delayed afterdepolarization-induced triggered activity, whereas in situ His-Purkinje fibers exhibited increased susceptibility for pause-dependent early afterdepolarizations. Epicardial mapping of Calm1N98S/+ hearts showed that both reentry and focal mechanisms contribute to arrhythmogenesis. Conclusions: Heterozygosity for the Calm1N98S mutation is causative of an arrhythmia syndrome characterized by sinus bradycardia, QRS widening, adrenergically mediated QTc interval prolongation, and bidirectional ventricular tachycardia. β-Adrenergically induced ICa.L dysregulation contributes to the long-QT phenotype. Pause-dependent early afterdepolarizations and tachycardia-induced delayed afterdepolarizations originating in the His-Purkinje network and ventricular myocytes, respectively, constitute potential sources of arrhythmia in Calm1N98S/+ hearts.Item Epicardial calcineurin-NFAT signals through Smad2 to direct coronary smooth muscle cell and arterial wall development(Oxford University Press, 2014-01-01) Yang, Jin; Zeini, Miriam; Lin, Chieh-Yu; Chieh-Yu, Chien-Jung; Xiong, Yiqin; Shang, Ching; Han, Pei; Li, Wei; Quertermous, Thomas; Zhou, Bin; Chang, Ching-Pin; Department of Medicine, IU School of MedicineAIMS: Congenital coronary artery anomalies produce serious events that include syncope, arrhythmias, myocardial infarction, or sudden death. Studying the mechanism of coronary development will contribute to the understanding of the disease and help design new diagnostic or therapeutic strategies. Here, we characterized a new calcineurin-NFAT signalling which specifically functions in the epicardium to regulate the development of smooth muscle wall of the coronary arteries. METHODS AND RESULTS: Using tissue-specific gene deletion, we found that calcineurin-NFAT signals in the embryonic epicardium to direct coronary smooth muscle cell development. The smooth muscle wall of coronary arteries fails to mature in mice with epicardial deletion of calcineurin B1 (Cnb1), and accordingly these mutant mice develop cardiac dysfunction with reduced exercise capacity. Inhibition of calcineurin at various developmental windows shows that calcineurin-NFAT signals within a narrow time window at embryonic Day 12.5-13.5 to regulate coronary smooth muscle cell development. Within the epicardium, NFAT transcriptionally activates the expression of Smad2, whose gene product is critical for transducing transforming growth factor β (TGFβ)-Alk5 signalling to control coronary development. CONCLUSION: Our findings demonstrate new spatiotemporal and molecular actions of calcineurin-NFAT that dictate coronary arterial wall development and a new mechanism by which calcineurin-NFAT integrates with TGFβ signalling during embryonic development.Item Epigenetic response to environmental stress: Assembly of BRG1–G9a/GLP–DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts(Elsevier, 2016-03-04) Han, Pei; Li, Wei; Yang, Jin; Shang, Ching; Lin, Chiou-Hong; Cheng, Wei; Hang, Calvin T.; Cheng, Hsiu-Ling; Chen, Chen-Hao; Wong, Johnson; Xiong, Yiqin; Zhao, Mingming; Drakos, Stavros G.; Ghetti, Andrea; Li, Dean Y.; Bernstein, Daniel; Chen, Huei-sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin; Medicine, School of MedicineChromatin structure is determined by nucleosome positioning, histone modifications, and DNA methylation. How chromatin modifications are coordinately altered under pathological conditions remains elusive. Here we describe a stress-activated mechanism of concerted chromatin modification in the heart. In mice, pathological stress activates cardiomyocytes to express Brg1 (nucleosome-remodeling factor), G9a/Glp (histone methyltransferase), and Dnmt3 (DNA methyltransferase). Once activated, Brg1 recruits G9a and then Dnmt3 to sequentially assemble repressive chromatin—marked by H3K9 and CpG methylation—on a key molecular motor gene (Myh6), thereby silencing Myh6 and impairing cardiac contraction. Disruption of Brg1, G9a or Dnmt3 erases repressive chromatin marks and de-represses Myh6, reducing stress-induced cardiac dysfunction. In human hypertrophic hearts, BRG1–G9a/GLP–DNMT3 complex is also activated; its level correlates with H3K9/CpG methylation, Myh6 repression, and cardiomyopathy. Our studies demonstrate a new mechanism of chromatin assembly in stressed hearts and novel therapeutic targets for restoring Myh6 and ventricular function. The stress-induced Brg1–G9a–Dnmt3 interactions and sequence of repressive chromatin assembly on Myh6 illustrates a molecular mechanism by which the heart epigenetically responds to environmental signals. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.Item Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure(Springer Nature, 2015-09-10) Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J.; Yang, Jin; Donti, Taraka R.; Harmancey, Romain; Vasquez, Hernan G.; Graham, Brett H.; Bellen, Hugo J.; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y.; Department of Medicine, IU School of MedicineMitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy.Item Increased serum lysyl oxidase-like 2 levels correlate with the degree of left atrial fibrosis in patients with atrial fibrillation(Portland Press, 2017-11-21) Zhao, Yingming; Tang, Kangting; Tianbao, Xu; Wang, Junhong; Yang, Jin; Li, Dianfu; Medicine, School of MedicineAtrial fibrillation (AF) progression is generally accompanied by increased atrial fibrosis and atrial structural remodeling. Lysyl oxidase-like 2 (LOXL2) is known to play an important role in many fibrotic conditions, including cardiac fibrosis. The present study aimed to explore the relationship between serum LOXL2 levels and AF. Fifty-four AF patients and 32 control subjects were enrolled in the study. High-density three-dimensional electroanatomic mapping was performed, and mean bipolar voltage was assessed in AF patients. LOXL2 levels were measured by enzyme-linked immunosorbent assay. All patients underwent echocardiography to assess left atrium size and left ventricle function. Serum LOXL2 levels were significantly elevated in AF patients compared with the control group (526.81 ± 316.82 vs 240.94 ± 92.51 pg/ml, P<0.01). In addition, serum LOXL2 level was significantly correlated with the size of the left atrium (LAD) (r2 = 0.38, P<0.01). Furthermore, the serum LOXL2 levels were significantly higher in AF patients with LAD ≥ 40 mm compared with those with LAD < 40 mm (664.34 ± 346.50 vs 354.90 ± 156.23 pg/ml, P<0.01). And the Spearman’s correlation analysis further revealed that the mean bipolar left atrial voltage was inversely correlated with the LOXL2 (r2 = −0.49, P<0.01) in AF patients. Multivariate regression analysis further demonstrated that serum LOXL2 [odds ratio (OR) 1.013, 95% confidence interval (CI) 1.002–1.024, P<0.05] and LAD (OR 1.704, 95% CI 1.131–2.568, P<0.01) were independent predictors of AF. In conclusion, serum LOXL2 levels were significantly elevated and were correlated with the degree of left atrial fibrosis in AF patients.Item Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes(Elsevier, 2014-11) Viatchenko-Karpinski, Serge; Kornyeyev, Dmytro; El-Bizri, Nesrine; Budas, Grant; Fan, Peidong; Jiang, Zhan; Yang, Jin; Anderson, Mark E.; Shryock, John C.; Chang, Ching-Pin; Belardinelli, Luiz; Yao, Lina; Department of Medicine, IU School of MedicineAn increase of late Na(+) current (INaL) in cardiac myocytes can raise the cytosolic Na(+) concentration and is associated with activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alterations of mitochondrial metabolism and Ca(2+) handling by sarcoplasmic reticulum (SR). We tested the hypothesis that augmentation of INaL can increase mitochondrial reactive oxygen species (ROS) production and oxidation of CaMKII, resulting in spontaneous SR Ca(2+) release and increased diastolic Ca(2+) in myocytes. Increases of INaL and/or of the cytosolic Na(+) concentration led to mitochondrial ROS production and oxidation of CaMKII to cause dysregulation of Ca(2+) handling in rabbit cardiac myocytes.Item A long non-coding RNA protects the heart from pathological hypertrophy(Nature Publishing Group, 2014-10-02) Han, Pei; Li, Wei; Lin, Chiou-Hong; Yang, Jin; Shang, Ching; Nuernberg, Sylvia T.; Jin, Kevin Kai; Xu, Weihong; Lin, Chieh-Yu; Lin, Chien-Jung; Xiong, Yiqin; Chien, Huanchieh; Zhou, Bin; Ashley, Euan; Bernstein, Daniel; Chen, Peng-Sheng; Chen, Huei-sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin; Department of Medicine, IU School of MedicineThe role of long noncoding RNA (lncRNA) in adult hearts is unknownItem Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1–FoxM1 complex(National Academy of Sciences, 2016-09-20) Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin; Department of Medicine, IU School of MedicineGenes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.Item Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment(SpringerNature, 2016-12-14) Yang, Jin; Savvatis, Konstantinos; Kang, Jong Seok; Fan, Peidong; Zhong, Hongyan; Schwartz, Karen; Barry, Vivian; Mikels-Vigdal, Amanda; Karpinski, Serge; Kornyeyev, Dmytro; Adamkewicz, Joanne; Feng, Xuhui; Zhou, Qiong; Shang, Ching; Kumar, Praveen; Phan, Dillon; Kasner, Mario; Lopez, Begona; Diez, Javier; Wright, Keith C.; Kovacs, Roxanne L.; Chen, Peng-Sheng; Quertermous, Thomas; Smith, Victoria; Yao, Lina; Tschope, Carsten; Chang, Ching-Pin; Department of Medicine, IU School of MedicineInterstitial fibrosis plays a key role in the development and progression of heart failure. Here, we show that an enzyme that crosslinks collagen-Lysyl oxidase-like 2 (Loxl2)-is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts. In mice, cardiac stress activates fibroblasts to express and secrete Loxl2 into the interstitium, triggering fibrosis, systolic and diastolic dysfunction of stressed hearts. Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces stress-induced cardiac fibrosis and chamber dilatation, improving systolic and diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to produce TGF-β2, promoting fibroblast-to-myofibroblast transformation; Loxl2 also acts downstream of TGF-β2 to stimulate myofibroblast migration. In diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF.