- Browse by Author
Browsing by Author "Yan, Yuanqing"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial Injury Model(Hindawi, 2019-11-03) Li Calzi, Sergio; Cook, Todd; Della Rocca, Domenico G.; Zhang, Juan; Shenoy, Vinayak; Yan, Yuanqing; Espejo, Andrew; Rathinasabapathy, Anandharajan; Jacobsen, Max H.; Salazar, Tatiana; Sandusky, George E.; Shaw, Lynn C.; March, Keith; Raizada, Mohan K.; Pepine, Carl J.; Katovich, Michael J.; Grant, Maria B.; Medicine, School of MedicineWe compared the functional outcome of Isl-1+ cardiac progenitors, CD90+ bone marrow-derived progenitor cells, and the combination of the two in a rat myocardial infarction (MI) model. Isl-1+ cells were isolated from embryonic day 12.5 (E12.5) rat hearts and expanded in vitro. Thy-1+/CD90+ cells were isolated from the bone marrow of adult Sprague-Dawley rats by immunomagnetic cell sorting. Six-week-old female Sprague-Dawley rats underwent permanent left anterior descending (LAD) coronary artery ligation and received intramyocardial injection of either saline, Isl-1+ cells, CD90+ cells, or a combination of Isl-1+ and CD90+ cells, at the time of infarction. Cells were delivered transepicardially to the peri-infarct zone. Left ventricular function was assessed by transthoracic echocardiography at 1- and 4-week post-MI and by Millar catheterization (-dP/dt and +dP/dt) at 4-week post-MI. Fluorescence in situ hybridization (Isl-1+cells) and monochrystalline iron oxide nanoparticles labeling (MION; CD90+ cells) were performed to assess biodistribution of transplanted cells. Only the combination of cells demonstrated a significant improvement of cardiac function as assessed by anterior wall contractility, dP/dt (max), and dP/dt (min), compared to Isl-1+ or CD90+ cell monotherapies. In the combination cell group, viable cells were detected at week 4 when anterior wall motion was completely restored. In conclusion, the combination of Isl-1+ cardiac progenitors and adult bone marrow-derived CD90+ cells shows prolonged and robust myocardial tissue repair and provides support for the use of complementary cell populations to enhance myocardial repair.Item Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells(Wiley, 2017-05) Salazar, Tatiana E.; Richardson, Matthew R.; Beli, Eleni; Ripsch, Matthew S.; George, John; Kim, Youngsook; Duan, Yaqian; Moldovan, Leni; Yan, Yuanqing; Bhatwadekar, Ashay; Jadhav, Vaishnavi; Smith, Jared A.; McGorray, Susan; Bertone, Alicia L.; Traktuev, Dmitri O.; March, Keith L.; Colon-Perez, Luis M.; Avin, Keith; Sims, Emily; Mund, Julie A.; Case, Jamie; Deng, Shaolin; Kim, Min Su; McDavitt, Bruce; Boulton, Michael E.; Thinschmidt, Jeffrey; Calzi, Sergio Li; Fitz, Stephanie D.; Fuchs, Robyn K.; Warden, Stuart J.; McKinley, Todd; Shekhar, Anantha; Febo, Marcelo; Johnson, Phillip L.; Chang, Lung Ji; Gao, Zhanguo; Kolonin, Mikhail G.; Lai, Song; Ma, Jinfeng; Dong, Xinzhong; White, Fletcher A.; Xie, Huisheng; Yoder, Mervin C.; Grant, Maria B.; Ophthalmology, School of MedicineElectroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief.Item Immunodeficiency in Pancreatic Adenocarcinoma with Diabetes Revealed by Comparative Genomics(American Association for Cancer Research, 2017-10-15) Yan, Yuanqing; Gao, Ruli; Trinh, Thao L.P.; Grant, Maria B.; Ophthalmology, School of MedicinePurpose: Pancreatic adenocarcinomas (PAAD) often are not diagnosed until their late stages, leaving no effective treatments. Currently, immunotherapy provides a promising treatment option against this malignancy. However, a set of immunotherapy agents benefit patients with many types of cancer, but not PAAD. Sharing the origin in the same organ, diabetes and PAAD tend to occur concurrently. We aimed to identify the impact of diabetes on immunotherapy of PAAD by conducting a comparative genomics analysis.Experimental Design: We analyzed level 3 PAAD genomics data (RNAseq, miRNAseq, DNA methylation, somatic copy number, and somatic mutation) from The Cancer Genome Atlas (TCGA) and Firehose. The differential molecular profiles in PAAD with/out diabetes were performed by the differential gene expression, pathway analysis, epigenetic regulation, somatic copy-number alteration, and somatic gene mutation.Results: Differential gene expression analysis revealed a strong enrichment of immunogenic signature genes in diabetic individuals, including PD-1 and CTLA4, that were currently targetable for immunotherapy. Pathway analysis further implied that diabetic individuals were defective in immune modulation genes. Somatic copy-number aberration (SCNA) analysis showed a higher frequency of amplification and deletion occurred in the cohort without diabetes. Integrative analysis revealed strong association between differential gene expression, and epigenetic regulations, however, seemed not affected by SCNAs. Importantly, our somatic mutation analysis showed that the occurrence of diabetes in PAAD was associated with a large set of gene mutations encoding genes participating in immune modulation.Conclusions: Our analysis reveals the impact of diabetes on immunodeficiency in PAAD patients and provides novel insights into new therapeutic opportunities.Item Impaired Autophagy Diurnal Rhythmicity in Rodent Diabetic Retinopathy(Office of the Vice Chancellor for Research, 2015-04-17) Qi, Xiaoping; Mitter, Sayak; Yan, Yuanqing; Dunn, William; Busik, Juliet; Grant, Maria; Boulton, MichelePurpose: Retinal homeostasis is under both diurnal and circadian regulation. However, diurnal changes in retinal autophagy have not been hitherto explored. We sought to investigate the diurnal expression of autophagy proteins/genes in normal rodent retina to determine if this is impaired in diabetic retinopathy. Methods: Eyes from C57BL/6 mice and BBZ rats maintained under a 12h/12h; 6am/6pm light/dark cycle were enucleated every 2 or 3 hours over a 24 hour period. Eyes were also collected from C57BL/6 induced STZ for 2 or 9 month as type 1 and BBZDR/wor type 2 diabetic rats for 4 months. Immunohistochemistry, Western-blot and real-time PCR were performed for Atg7, Atg9, LC3 and Beclin. Retina vessel pathology and superoxide were assessed by enzyme digestion and a spectrofluorometer. Results: Autophagy proteins (Atgs) were abundantly expressed in neural retina and endothelia cells in both mice and rats with differential staining pattern across the retinas and demonstrated a distinctive diurnal rhythmicity. All Atgs showed localization to retinal blood vessels with Atg7 being the most highly expressed. Analysis of the immunostaining demonstrated distinctive diurnal rhythmicity of which Atg9 and LC3 shared a biphasic expression cycle with the highest level at 8:15 am and 8:15 pm. By contrast, Beclin revealed a 24-hour cycle with the highest level observed at midnight. Atg7 was also on a 24-hour cycle with peak expression at 8:15am, coinciding with the first peak expression of Atg9 and LC3. In diabetic animals, immunohistochemistry showed dramatic reduction in all four Atgs and this was further confirmed by Western Blot, especially a decrease in LC3II/LC3I ratio (a measure of autophagy flux). Furthermore, the distinctive diurnal rhythmicity of these autophagy proteins was significantly impaired and phase shifted in diabetic animals. Conclusions: Autophagy proteins show both spatial and diurnal-dependent expression in normal rodent retinas and this is severely impaired and phase shifted in both type 1 and type 2 diabetic animals. Decreased autophagy in diabetic animals may in part explain the increased generation of reactive oxygen species in diabetic retinopathy. Therefore, restoration of diurnal rhythmicity and facilitating autophagy pathway expression may provide new treatment strategies for diabetic retinopathy.Item Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes(Elsevier, 2017-05) Kady, Nermin; Yan, Yuanqing; Salazar, Tatiana; Wang, Qi; Chakravarthy, Harshini; Huang, Chao; Beli, Eleni; Navitskaya, Svetlana; Grant, Maria; Busik, Julia; Ophthalmology, School of MedicineBACKGROUND: Diabetic retinopathy is a microvascular disease that results from retinal vascular degeneration and defective repair due to diabetes-induced endothelial progenitor dysfunction. OBJECTIVE: Understanding key molecular factors involved in vascular degeneration and repair is paramount for developing effective diabetic retinopathy treatment strategies. We propose that diabetes-induced activation of acid sphingomyelinase (ASM) plays essential role in retinal endothelial and CD34+ circulating angiogenic cell (CAC) dysfunction in diabetes. METHODS: Human retinal endothelial cells (HRECs) isolated from control and diabetic donor tissue and human CD34+ CACs from control and diabetic patients were used in this study. ASM messenger RNA and protein expression were assessed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. To evaluate the effect of diabetes-induced ASM on HRECs and CD34+ CACs function, tube formation, CAC incorporation into endothelial tubes, and diurnal release of CD34+ CACs in diabetic individuals were determined. RESULTS: ASM expression level was significantly increased in HRECs isolated from diabetic compared with control donor tissue, as well as CD34+ CACs and plasma of diabetic patients. A significant decrease in tube area was observed in HRECs from diabetic donors compared with control HRECs. The tube formation deficiency was associated with increased expression of ASM in diabetic HRECs. Moreover, diabetic CD34+ CACs with high ASM showed defective incorporation into endothelial tubes. Diurnal release of CD34+ CACs was disrupted with the rhythmicity lost in diabetic patients. CONCLUSION: Collectively, these findings support that diabetes-induced ASM upregulation has a marked detrimental effect on both retinal endothelial cells and CACs.Item Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy(SpringerNature, 2016) Wert, Katherine; Mahajan, Minit B.; Zhang, Lijuan; Yan, Yuanqing; Li, Yao; Tosi, Joaquin; Hsu, Chun Wei; Nagasaki, Takayuki; Janisch, Kerstin M.; Grant, Maria B.; Mahajan, MaryAnn; Bassuk, Alexander G.; Tsang, Stephen H.; Department of Ophthalmology, IU School of MedicineDiabetic retinopathy (DR) affects approximately one-third of diabetic patients and, if left untreated, progresses to proliferative DR (PDR) with associated vitreous hemorrhage, retinal detachment, iris neovascularization, glaucoma and irreversible blindness. In vitreous samples of human patients with PDR, we found elevated levels of hypoxia inducible factor 1 alpha (HIF1α). HIFs are transcription factors that promote hypoxia adaptation and have important functional roles in a wide range of ischemic and inflammatory diseases. To recreate the human PDR phenotype for a preclinical animal model, we generated a mouse with neuroretinal-specific loss of the von Hippel Lindau tumor suppressor protein, a protein that targets HIF1α for ubiquitination. We found that the neuroretinal cells in these mice overexpressed HIF1α and developed severe, irreversible ischemic retinopathy that has features of human PDR. Rapid progression of retinopathy in these mutant mice should facilitate the evaluation of therapeutic agents for ischemic and inflammatory blinding disorders. In addition, this model system can be used to manipulate the modulation of the hypoxia signaling pathways, for the treatment of non-ocular ischemic and inflammatory disorders.Item Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina(Association for Research in Vision and Opthalmology, 2014-06) Wang, Qi; Bozack, Svetlana N.; Yan, Yuanqing; Boulton, Michael E.; Grant, Maria B.; Busik, Julia V.; Department of Ophthalmology, IU School of MedicinePURPOSE: Chronic inflammation and dysregulation of circadian rhythmicity are involved in the pathogenesis of diabetic retinopathy. MicroRNAs (miRNAs) can regulate inflammation and circadian clock machinery. We tested the hypothesis that altered daily rhythm of miR-146a expression in diabetes contributes to retinal inflammation. METHODS: Nondiabetic and STZ-induced diabetic rats kept in 12/12 light/dark cycle were killed every 2 hours over a 72-hour period. Human retinal endothelial cells (HRECs) were synchronized with dexamethasone. Expression of miR-146a, IL-1 receptor-associated kinase 1 (IRAK1), IL-1β, VEGF and ICAM-1, as well as clock genes was examined by real-time PCR and Western blot. To modulate expression levels of miR-146a, mimics and inhibitors were used. RESULTS: Diabetes inhibited amplitude of negative arm (per1) and enhanced amplitude of the positive arm (bmal1) of clock machinery in retina. In addition to clock genes, miR-146a and its target gene IRAK1 also exhibited daily oscillations in antiphase; however, these patterns were lost in diabetic retina. This loss of rhythmic pattern was associated with an increase in ICAM-1, IL-β, and VEGF expression. Human retinal endothelial cells had robust miR-146a expression that followed circadian oscillation pattern; however, HRECs isolated from diabetic donors had reduced miR-146a amplitude but increased amplitude of IRAK1 and ICAM-1. In HRECs, miR-146a mimic or inhibitor caused 1.6- and 1.7-fold decrease or 1.5- and 1.6-fold increase, respectively, in mRNA and protein expression levels of ICAM-1 after 48 hours. CONCLUSIONS: Diabetes-induced dysregulation of daily rhythms of miR-146a and inflammatory pathways under miR-146a control have potential implications for the development of diabetic retinopathy.Item Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice(American Diabetes Association, 2018-09) Beli, Eleni; Yan, Yuanqing; Moldovan, Leni; Vieira, Cristiano P.; Gao, Ruli; Duan, Yaqian; Prasad, Ram; Bhatwadekar, Ashay; White, Fletcher A.; Townsend, Steven D.; Chan, Luisa; Ryan, Caitlin N.; Morton, Daniel; Moldovan, Emil G.; Chu, Fang-I; Oudit, Gavin Y.; Derendorf, Hartmut; Adorini, Luciano; Wang, Xiaoxin X.; Evans-Molina, Carmella; Mirmira, Raghavendra G.; Boulton, Michael E.; Yoder, Mervin C.; Li, Qiuhong; Levi, Moshe; Busik, Julia V.; Grant, Maria B.; Pediatrics, School of MedicineIntermittent fasting (IF) protects against the development of metabolic diseases and cancer, but whether it can prevent diabetic microvascular complications is not known. In db/db mice, we examined the impact of long-term IF on diabetic retinopathy (DR). Despite no change in glycated hemoglobin, db/db mice on the IF regimen displayed significantly longer survival and a reduction in DR end points, including acellular capillaries and leukocyte infiltration. We hypothesized that IF-mediated changes in the gut microbiota would produce beneficial metabolites and prevent the development of DR. Microbiome analysis revealed increased levels of Firmicutes and decreased Bacteroidetes and Verrucomicrobia. Compared with db/db mice on ad libitum feeding, changes in the microbiome of the db/db mice on IF were associated with increases in gut mucin, goblet cell number, villi length, and reductions in plasma peptidoglycan. Consistent with the known modulatory effects of Firmicutes on bile acid (BA) metabolism, measurement of BAs demonstrated a significant increase of tauroursodeoxycholate (TUDCA), a neuroprotective BA, in db/db on IF but not in db/db on AL feeding. TGR5, the TUDCA receptor, was found in the retinal primary ganglion cells. Expression of TGR5 did not change with IF or diabetes. However, IF reduced retinal TNF-α mRNA, which is a downstream target of TGR5 activation. Pharmacological activation of TGR5 using INT-767 prevented DR in a second diabetic mouse model. These findings support the concept that IF prevents DR by restructuring the microbiota toward species producing TUDCA and subsequent retinal protection by TGR5 activation.Item Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration(Elsevier, 2017-04-05) Qi, Xiaoping; Pay, S. Louise; Yan, Yuanqing; Thomas, James, Jr.; Lewin, Alfred S.; Chang, Lung-Ji; Grant, Maria B.; Boulton, Michael E.; Ophthalmology, School of MedicineBone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis. Importantly, electroretinography and optokinetic response tests confirmed that visual function was significantly improved. Mice treated with non-modified BMDCs or BMDCs pre-programmed with LacZ did not exhibit significant improvement in visual deficit. RPE65-BMDC administration was most effective in early disease, when visual function and retinal morphology returned to near normal, and less effective in late-stage disease. This experimental paradigm offers a minimally invasive cellular therapy that can be given systemically overcoming the need for invasive ocular surgery and offering the potential to arrest progression in early AMD and other RPE-based diseases.