- Browse by Author
Browsing by Author "Xiang, Zhenting"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Farnesol Delivery via Polymeric Nanoparticle Carriers Inhibits Cariogenic Cross-Kingdom Biofilms and Prevents Enamel Demineralization(Wiley, 2022) Ito, Tatsuro; Sims, Kenneth R., Jr.; Liu, Yuan; Xiang, Zhenting; Arthur, Rodrigo A.; Hara, Anderson T.; Koo, Hyun; Benoit, Danielle S. W.; Klein, Marlise I.; Biomedical and Applied Sciences, School of DentistryStreptococcus mutans and Candida albicans are frequently detected together in the plaque from patients with early childhood caries (ECC) and synergistically interact to form a cariogenic cross-kingdom biofilm. However, this biofilm is difficult to control. Thus, to achieve maximal efficacy within the complex biofilm microenvironment, nanoparticle carriers have shown increased interest in treating oral biofilms in recent years. Here, we assessed the anti-biofilm efficacy of farnesol (Far), a hydrophobic antibacterial drug and repressor of Candida filamentous forms, against cross-kingdom biofilms employing drug delivery via polymeric nanoparticle carriers (NPCs). We also evaluated the effect of the strategy on teeth enamel demineralization. The farnesol-loaded NPCs (NPC+Far) resulted in a 2-log CFU/mL reduction of S. mutans and C. albicans (hydroxyapatite disc biofilm model). High-resolution confocal images further confirmed a significant reduction in exopolysaccharides, smaller microcolonies of S. mutans, and no hyphal form of C. albicans after treatment with NPC+Far on human tooth enamel (HT) slabs, altering the biofilm 3D structure. Furthermore, NPC+Far treatment was highly effective in preventing enamel demineralization on HT, reducing lesion depth (79% reduction) and mineral loss (85% reduction) versus vehicle PBS-treated HT, while NPC or Far alone had no differences with the PBS. The drug delivery via polymeric NPCs has the potential for targeting bacterial-fungal biofilms associated with a prevalent and costly pediatric oral disease, such as ECC.Item Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions(National Academy of Science, 2022) Ren, Zhi; Jeckel, Hannah; Simon-Soro, Aurea; Xiang, Zhenting; Liu, Yuan; Cavalcanti, Indira M.; Xiao, Jin; Tin, Nyi-Nyi; Hara, Anderson; Drescher, Knut; Koo, Hyun; Cariology, Operative Dentistry and Dental Public Health, School of DentistryFungi and bacteria form multicellular biofilms causing many human infections. How such distinctive microbes act in concert spatiotemporally to coordinate disease-promoting functionality remains understudied. Using multiscale real-time microscopy and computational analysis, we investigate the dynamics of fungal and bacterial interactions in human saliva and their biofilm development on tooth surfaces. We discovered structured interkingdom assemblages displaying emergent functionalities to enhance collective surface colonization, survival, and growth. Further analyses revealed an unexpected group-level surface mobility with coordinated “leaping-like” and “walking-like” motions while continuously growing. These mobile groups of growing cells promote rapid spatial spreading of both species across surfaces, causing more extensive tooth decay. Our findings show multicellular interkingdom assemblages acting like supraorganisms with functionalities that cannot be achieved without coassembly.