- Browse by Author
Browsing by Author "Wolk, David A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Baseline neuropsychiatric symptoms and psychotropic medication use midway through data collection of the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) cohort(Wiley, 2023) Polsinelli, Angelina J.; Wonderlin, Ryan J.; Hammers, Dustin B.; Pena Garcia, Alex; Eloyan, Anii; Taurone, Alexander; Thangarajah, Maryanne; Beckett, Laurel; Gao, Sujuan; Wang, Sophia; Kirby, Kala; Logan, Paige E.; Aisen, Paul; Dage, Jeffrey L.; Foroud, Tatiana; Griffin, Percy; Iaccarino, Leonardo; Kramer, Joel H.; Koeppe, Robert; Kukull, Walter A.; La Joie, Renaud; Mundada, Nidhi S.; Murray, Melissa E.; Nudelman, Kelly; Soleimani-Meigooni, David N.; Rumbaugh, Malia; Toga, Arthur W.; Touroutoglou, Alexandra; Vemuri, Prashanthi; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph; Mendez, Mario F.; Womack, Kyle; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Steven; Sha, Sharon J.; Turner, Raymond S.; Wingo, Thomas S.; Wolk, David A.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineIntroduction: We examined neuropsychiatric symptoms (NPS) and psychotropic medication use in a large sample of individuals with early-onset Alzheimer's disease (EOAD; onset 40-64 years) at the midway point of data collection for the Longitudinal Early-onset Alzheimer's Disease Study (LEADS). Methods: Baseline NPS (Neuropsychiatric Inventory - Questionnaire; Geriatric Depression Scale) and psychotropic medication use from 282 participants enrolled in LEADS were compared across diagnostic groups - amyloid-positive EOAD (n = 212) and amyloid negative early-onset non-Alzheimer's disease (EOnonAD; n = 70). Results: Affective behaviors were the most common NPS in EOAD at similar frequencies to EOnonAD. Tension and impulse control behaviors were more common in EOnonAD. A minority of participants were using psychotropic medications, and use was higher in EOnonAD. Discussion: Overall NPS burden and psychotropic medication use were higher in EOnonAD than EOAD participants. Future research will investigate moderators and etiological drivers of NPS, and NPS differences in EOAD versus late-onset AD. Keywords: early-onset Alzheimer's disease; early-onset dementia; mild cognitive impairment; neuropharmacology; neuropsychiatric symptoms; psychotropic medications.Item Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression(American Medical Association, 2022) Wen, Junhao; Fu, Cynthia H. Y.; Tosun, Duygu; Veturi, Yogasudha; Yang, Zhijian; Abdulkadir, Ahmed; Mamourian, Elizabeth; Srinivasan, Dhivya; Skampardoni, Ioanna; Singh, Ashish; Nawani, Hema; Bao, Jingxuan; Erus, Guray; Shou, Haochang; Habes, Mohamad; Doshi, Jimit; Varol, Erdem; Mackin, R. Scott; Sotiras, Aristeidis; Fan, Yong; Saykin, Andrew J.; Sheline, Yvette I.; Shen, Li; Ritchie, Marylyn D.; Wolk, David A.; Albert, Marilyn; Resnick, Susan M.; Davatzikos, Christos; iSTAGING consortium; ADNI; BIOCARD; BLSA; Radiology and Imaging Sciences, School of MedicineImportance: Late-life depression (LLD) is characterized by considerable heterogeneity in clinical manifestation. Unraveling such heterogeneity might aid in elucidating etiological mechanisms and support precision and individualized medicine. Objective: To cross-sectionally and longitudinally delineate disease-related heterogeneity in LLD associated with neuroanatomy, cognitive functioning, clinical symptoms, and genetic profiles. Design, setting, and participants: The Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) study is an international multicenter consortium investigating brain aging in pooled and harmonized data from 13 studies with more than 35 000 participants, including a subset of individuals with major depressive disorder. Multimodal data from a multicenter sample (N = 996), including neuroimaging, neurocognitive assessments, and genetics, were analyzed in this study. A semisupervised clustering method (heterogeneity through discriminative analysis) was applied to regional gray matter (GM) brain volumes to derive dimensional representations. Data were collected from July 2017 to July 2020 and analyzed from July 2020 to December 2021. Main outcomes and measures: Two dimensions were identified to delineate LLD-associated heterogeneity in voxelwise GM maps, white matter (WM) fractional anisotropy, neurocognitive functioning, clinical phenotype, and genetics. Results: A total of 501 participants with LLD (mean [SD] age, 67.39 [5.56] years; 332 women) and 495 healthy control individuals (mean [SD] age, 66.53 [5.16] years; 333 women) were included. Patients in dimension 1 demonstrated relatively preserved brain anatomy without WM disruptions relative to healthy control individuals. In contrast, patients in dimension 2 showed widespread brain atrophy and WM integrity disruptions, along with cognitive impairment and higher depression severity. Moreover, 1 de novo independent genetic variant (rs13120336; chromosome: 4, 186387714; minor allele, G) was significantly associated with dimension 1 (odds ratio, 2.35; SE, 0.15; P = 3.14 ×108) but not with dimension 2. The 2 dimensions demonstrated significant single-nucleotide variant-based heritability of 18% to 27% within the general population (N = 12 518 in UK Biobank). In a subset of individuals having longitudinal measurements, those in dimension 2 experienced a more rapid longitudinal change in GM and brain age (Cohen f2 = 0.03; P = .02) and were more likely to progress to Alzheimer disease (Cohen f2 = 0.03; P = .03) compared with those in dimension 1 (N = 1431 participants and 7224 scans from the Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], and Biomarkers for Older Controls at Risk for Dementia [BIOCARD] data sets). Conclusions and relevance: This study characterized heterogeneity in LLD into 2 dimensions with distinct neuroanatomical, cognitive, clinical, and genetic profiles. This dimensional approach provides a potential mechanism for investigating the heterogeneity of LLD and the relevance of the latent dimensions to possible disease mechanisms, clinical outcomes, and responses to interventions.Item Creating the Pick's disease International Consortium: Association study of MAPT H2 haplotype with risk of Pick's disease(medRxiv, 2023-04-24) Valentino, Rebecca R.; Scotton, William J.; Roemer, Shanu F.; Lashley, Tammaryn; Heckman, Michael G.; Shoai, Maryam; Martinez-Carrasco, Alejandro; Tamvaka, Nicole; Walton, Ronald L.; Baker, Matthew C.; Macpherson, Hannah L.; Real, Raquel; Soto-Beasley, Alexandra I.; Mok, Kin; Revesz, Tamas; Warner, Thomas T.; Jaunmuktane, Zane; Boeve, Bradley F.; Christopher, Elizabeth A.; DeTure, Michael; Duara, Ranjan; Graff-Radford, Neill R.; Josephs, Keith A.; Knopman, David S.; Koga, Shunsuke; Murray, Melissa E.; Lyons, Kelly E.; Pahwa, Rajesh; Parisi, Joseph E.; Petersen, Ronald C.; Whitwell, Jennifer; Grinberg, Lea T.; Miller, Bruce; Schlereth, Athena; Seeley, William W.; Spina, Salvatore; Grossman, Murray; Irwin, David J.; Lee, Edward B.; Suh, EunRan; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Wolk, David A.; Connors, Theresa R.; Dooley, Patrick M.; Frosch, Matthew P.; Oakley, Derek H.; Aldecoa, Iban; Balasa, Mircea; Gelpi, Ellen; Borrego-Écija, Sergi; de Eugenio Huélamo, Rosa Maria; Gascon-Bayarri, Jordi; Sánchez-Valle, Raquel; Sanz-Cartagena, Pilar; Piñol-Ripoll, Gerard; Molina-Porcel, Laura; Bigio, Eileen H.; Flanagan, Margaret E.; Gefen, Tamar; Rogalski, Emily J.; Weintraub, Sandra; Redding-Ochoa, Javier; Chang, Koping; Troncoso, Juan C.; Prokop, Stefan; Newell, Kathy L.; Ghetti, Bernardino; Jones, Matthew; Richardson, Anna; Robinson, Andrew C.; Roncaroli, Federico; Snowden, Julie; Allinson, Kieren; Green, Oliver; Rowe, James B.; Singh, Poonam; Beach, Thomas G.; Serrano, Geidy E.; Flowers, Xena E.; Goldman, James E.; Heaps, Allison C.; Leskinen, Sandra P.; Teich, Andrew F.; Black, Sandra E.; Keith, Julia L.; Masellis, Mario; Bodi, Istvan; King, Andrew; Sarraj, Safa-Al; Troakes, Claire; Halliday, Glenda M.; Hodges, John R.; Kril, Jillian J.; Kwok, John B.; Piguet, Olivier; Gearing, Marla; Arzberger, Thomas; Roeber, Sigrun; Attems, Johannes; Morris, Christopher M.; Thomas, Alan J.; Evers, Bret M.; White, Charles L.; Mechawar, Naguib; Sieben, Anne A.; Cras, Patrick P.; De Vil, Bart B.; De Deyn, Peter Paul P. P.; Duyckaerts, Charles; Le Ber, Isabelle; Seihean, Danielle; Turbant-Leclere, Sabrina; MacKenzie, Ian R.; McLean, Catriona; Cykowski, Matthew D.; Ervin, John F.; Wang, Shih-Hsiu J.; Graff, Caroline; Nennesmo, Inger; Nagra, Rashed M.; Riehl, James; Kovacs, Gabor G.; Giaccone, Giorgio; Nacmias, Benedetta; Neumann, Manuela; Ang, Lee-Cyn; Finger, Elizabeth C.; Blauwendraat, Cornelis; Nalls, Mike A.; Singleton, Andrew B.; Vitale, Dan; Cunha, Cristina; Carvalho, Agostinho; Wszolek, Zbigniew K.; Morris, Huw R.; Rademakers, Rosa; Hardy, John A.; Dickson, Dennis W.; Rohrer, Jonathan D.; Ross, Owen A.; Pathology and Laboratory Medicine, School of MedicineBackground: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD. Methods: We established the Pick's disease International Consortium (PIC) and collected 338 (60.7% male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521). Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. This finding is critical in directing isoform-related therapeutics for tauopathies.Item Introduction to special edition, "State of the Field: Advances in Neuroimaging from the 2016 Alzheimer's Imaging Consortium"(Elsevier, 2016-12-21) Mormino, Elizabeth C.; Wolk, David A.; Apostolova, Liana G.; Department of Neurology, IU School of MedicineItem The Longitudinal Early-onset Alzheimer’s Disease Study (LEADS): Framework and methodology(Wiley, 2021) Apostolova, Liana G.; Aisen, Paul; Eloyan, Ani; Fagan, Anne; Fargo, Keith N.; Foroud, Tatiana; Gatsonis, Constantine; Grinberg, Lea T.; Jack, Clifford R., Jr.; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; Murray, Melissa E.; Nudelman, Kelly; Rumbaugh, Malia; Toga, Arthur; Vemuri, Prashanthi; Trullinger, Amy; Iaccarino, Leonardo; Day, Gregory S.; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph; Mendez, Mario; Musiek, Erik; Onyike, Chiadi U.; Rogalski, Emily; Salloway, Steve; Wolk, David A.; Wingo, Thomas S.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; LEADS Consortium; Neurology, School of MedicinePatients with early‐onset Alzheimer's disease (EOAD) are commonly excluded from large‐scale observational and therapeutic studies due to their young age, atypical presentation, or absence of pathogenic mutations. The goals of the Longitudinal EOAD Study (LEADS) are to (1) define the clinical, imaging, and fluid biomarker characteristics of EOAD; (2) develop sensitive cognitive and biomarker measures for future clinical and research use; and (3) establish a trial‐ready network. LEADS will follow 400 amyloid beta (Aβ)‐positive EOAD, 200 Aβ‐negative EOnonAD that meet National Institute on Aging–Alzheimer's Association (NIA‐AA) criteria for mild cognitive impairment (MCI) or AD dementia, and 100 age‐matched controls. Participants will undergo clinical and cognitive assessments, magnetic resonance imaging (MRI), [18F]Florbetaben and [18F]Flortaucipir positron emission tomography (PET), lumbar puncture, and blood draw for DNA, RNA, plasma, serum and peripheral blood mononuclear cells, and post‐mortem assessment. To develop more effective AD treatments, scientists need to understand the genetic, biological, and clinical processes involved in EOAD. LEADS will develop a public resource that will enable future planning and implementation of EOAD clinical trials.