- Browse by Author
Browsing by Author "Williams, James C., Jr."
Now showing 1 - 10 of 40
Results Per Page
Sort Options
Item A crystallin mutant cataract with mineral deposits(Elsevier, 2023) Minogue, Peter J.; Gao, Junyuan; Mathias, Richard T.; Williams, James C., Jr.; Bledsoe, Sharon B.; Sommer, Andre J.; Beyer, Eric C.; Berthoud, Viviana M.; Anatomy, Cell Biology and Physiology, School of MedicineConnexin mutant mice develop cataracts containing calcium precipitates. To test whether pathologic mineralization is a general mechanism contributing to the disease, we characterized the lenses from a nonconnexin mutant mouse cataract model. By cosegregation of the phenotype with a satellite marker and genomic sequencing, we identified the mutant as a 5-bp duplication in the γC-crystallin gene (Crygcdup). Homozygous mice developed severe cataracts early, and heterozygous animals developed small cataracts later in life. Immunoblotting studies showed that the mutant lenses contained decreased levels of crystallins, connexin46, and connexin50 but increased levels of resident proteins of the nucleus, endoplasmic reticulum, and mitochondria. The reductions in fiber cell connexins were associated with a scarcity of gap junction punctae as detected by immunofluorescence and significant reductions in gap junction-mediated coupling between fiber cells in Crygcdup lenses. Particles that stained with the calcium deposit dye, Alizarin red, were abundant in the insoluble fraction from homozygous lenses but nearly absent in wild-type and heterozygous lens preparations. Whole-mount homozygous lenses were stained with Alizarin red in the cataract region. Mineralized material with a regional distribution similar to the cataract was detected in homozygous lenses (but not wild-type lenses) by micro-computed tomography. Attenuated total internal reflection Fourier-transform infrared microspectroscopy identified the mineral as apatite. These results are consistent with previous findings that loss of lens fiber cell gap junctional coupling leads to the formation of calcium precipitates. They also support the hypothesis that pathologic mineralization contributes to the formation of cataracts of different etiologies.Item A four-grating interferometer for x-ray multi-contrast imaging(Wiley, 2024) Miao, Houxun; Williams, James C., Jr.; Josell, Daniel; Anatomy, Cell Biology and Physiology, School of MedicineBackground: X-ray multi-contrast imaging with gratings provides a practical method to detect differential phase and dark-field contrast images in addition to the x-ray absorption image traditionally obtained in laboratory or hospital environments. Systems have been developed for preclinical applications in areas including breast imaging, lung imaging, rheumatoid arthritis hand imaging and kidney stone imaging. Purpose: Prevailing x-ray interferometers for multi-contrast imaging include Talbot-Lau interferometers and universal moiré effect-based phase-grating interferometers. Talbot-Lau interferometers suffer from conflict between high interferometer sensitivity and large field of view (FOV) of the object being imaged. A small period analyzer grating is necessary to simultaneously achieve high sensitivity and large FOV within a compact imaging system but is technically challenging to produce for high x-ray energies. Phase-grating interferometers suffer from an intrinsic fringe period ranging from a few micrometers to several hundred micrometers that can hardly be resolved by large area flat panel x-ray detectors. The purpose of this work is to introduce a four-grating x-ray interferometer that simultaneously allows high sensitivity and large FOV, without the need for a small period analyzer grating. Methods: The four-grating interferometer consists of a source grating placed downstream of and close to the x-ray source, a pair of phase gratings separated by a fixed distance placed downstream of the source grating, and an analyzer grating placed upstream of and close to the x-ray detector. The object to be imaged is placed upstream of and close to the phase-grating pair. The distance between the source grating and the phase-grating pair is designed to be far larger than that between the phase-grating pair and the analyzer grating to promote simultaneously high sensitivity and large FOV. The method was evaluated by constructing a four-grating interferometer with an 8 µm period source grating, a pair of phase gratings of 2.4 µm period, and an 8 µm period analyzer grating. Results: The fringe visibility of the four-grating interferometer was measured to be ≈24% at 40 kV and ≈18% at 50 kV x-ray tube operating voltage. A quartz bead of 6 mm diameter was imaged to compare the theoretical and experimental phase contrast signal with good agreement. Kidney stone specimens were imaged to demonstrate the potential of such a system for classification of kidney stones. Conclusions: The proposed four-grating interferometer geometry enables a compact x-ray multi-contrast imaging system with simultaneously high sensitivity and large FOV. Relaxation of the requirement for a small period analyzer grating makes it particularly suitable for high x-ray energy applications such as abdomen and chest imaging.Item A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease(Nature, 2023-07-19) Canela, Victor Hugo; Bowen, William S.; Ferreira, Ricardo Melo; Syed, Farooq; Lingeman, James E.; Sabo, Angela R.; Barwinska, Daria; Winfree, Seth; Lake, Blue B.; Cheng, Ying-Hua; Gaut, Joseph P.; Ferkowicz, Michael; LaFavers, Kaice A.; Zhang, Kun; Coe, Fredric L.; Worcester, Elaine; Jain, Sanjay; Eadon, Michael T.; Williams, James C., Jr.; El-Achkar, Tarek M.; Urology, School of MedicineKidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.Item Addition of Sodium Bicarbonate to Irrigation Solution May Assist in Dissolution of Uric Acid Fragments During Ureteroscopy(Liebert, 2018) Paonessa, Jessica E.; Williams, James C., Jr.; Lingeman, James E.; Urology, School of MedicineIntroduction: We hypothesized that adding sodium bicarbonate (bicarb) to normal saline (NS) irrigation during ureteroscopy in patients with uric acid (UA) nephrolithiasis may assist in dissolving small stone fragments produced during laser lithotripsy. In vitro testing was performed to determine whether dissolution of UA fragments could be accomplished within 1 hour. Materials and Methods: In total 100% UA renal calculi were fragmented, filtered, and separated by size. Fragment sizes were <0.5 mm and 0.5 to 1 mm. Similar amounts of stone material were agitated in solution at room temperature. Four solutions were tested (NS, NS +1 ampule bicarb/L, NS +2, NS +3). Both groups were filtered to remove solutions after fixed periods. Filtered specimens were dried and weighed. Fragment dissolution rates were calculated as percent removed per hour. Additional testing was performed to determine whether increasing the temperature of solution affected dissolution rates. Results: For fragments <0.5 mm, adding 2 or 3 bicarb ampules/L NS produced a dissolution rate averaging 91% ± 29% per hour. This rate averaged 226% faster than NS alone. With fragments 0.5 to 1 mm, addition of 2 or 3 bicarb ampules/L NS yielded a dissolution rate averaging 22% ± 7% per hour, which was nearly five times higher than NS alone. There was a trend for an increase in mean dissolution rate with higher temperature but this increase was not significant (p = 0.30). Conclusions: The addition of bicarbonate to NS more than doubles the dissolution rate of UA stone fragments and fragments less than 0.5 mm can be completely dissolved within 1 hour. Addition of bicarb to NS irrigation is a simple and inexpensive approach that may assist in the dissolution of UA fragments produced during ureteroscopic laser lithotripsy. Further studies are needed to determine whether a clinical benefit exists.Item Association Between Randall's Plaque Stone Anchors and Renal Papillary Pits(Mary Ann Liebert, 2019-04-01) Borofsky, Michael S.; Williams, James C., Jr.; Dauw, Casey A.; Cohen, Andrew; Evan, Andrew C.; Coe, Fredric L.; Worcester, Elaine; Lingeman, James E.; Anatomy and Cell Biology, School of MedicineIntroduction: Renal papillary pits are commonly encountered during ureteroscopy. The mechanism by which such pits arise is unclear. One hypothesis is that pits represent sites where stones overgrowing Randall's plaque (RP) were dislodged. We sought to examine this theory by using digital ureteroscopy and stone μCT. Materials and Methods: Patients undergoing endoscopic stone removal had procedures recorded and stones analyzed by using μCT. Stones with evidence of Randall's plaque anchors (RPAs) were identified in a blinded fashion. Surgical videos were reviewed independently by two urologists. Results: Twenty-eight patients had μCT-confirmed stones with RPA. Among them, 93% were recurrent stone formers and 75% had had prior stone procedures. Metabolic abnormalities were present in 87%, with 79% classified as idiopathic calcium oxalate stone formers. A mean of 7.6 stones with RPA were identified per procedure. In each case, papillary pits were visualized before any stone manipulation and in several cases the active dislodgement of an attached stone led to immediate identification of an underlying pit. Such stones routinely demonstrated an RPA on μCT. The average depth of RPA was 302 ± 172 μm, consistent with the corresponding shallow pits visualized on the papillary surface. Conclusions: Stones overgrowing RP are capable of pulling away a piece of papilla when dislodged, resulting in a visible papillary pit. This process manifests as an RPA on the undersurface of the stone and a papillary pit on the corresponding area of attachment. Identification of pits may help identify patients who form stones primarily by the RP mechanism.Item Biopsy proven medullary sponge kidney: clinical findings, histopathology, and role of osteogenesis in stone and plaque formation(John Wiley & Sons, Inc., 2015-05) Evan, Andrew P.; Worcester, Elaine M.; Williams, James C., Jr.; Sommer, Andre J.; Lingeman, James E.; Phillips, Carrie L.; Coe, Fredric L.; Department of Anatomy & Cell Biology, IU School of MedicineMedullary sponge kidney (MSK) is associated with recurrent stone formation, but the clinical phenotype is unclear because patients with other disorders may be incorrectly labeled MSK. We studied 12 patients with histologic findings pathognomonic of MSK. All patients had an endoscopically recognizable pattern of papillary malformation, which may be segmental or diffuse. Affected papillae are enlarged and billowy, due to markedly enlarged inner medullary collecting ducts (IMCD), which contain small, mobile ductal stones. Patients had frequent dilation of Bellini ducts, with occasional mineral plugs. Stones may form over white (Randall's) plaque, but most renal pelvic stones are not attached, and have a similar morphology as ductal stones, which are a mixture of calcium oxalate and apatite. Patients had no abnormalities of urinary acidification or acid excretion; the most frequent metabolic abnormality was idiopathic hypercalciuria. Although both Runx2 and Osterix are expressed in papillae of MSK patients, no mineral deposition was seen at the sites of gene expression, arguing against a role of these genes in this process. Similar studies in idiopathic calcium stone formers showed no expression of these genes at sites of Randall's plaque. The most likely mechanism for stone formation in MSK appears to be crystallization due to urinary stasis in dilated IMCD with subsequent passage of ductal stones into the renal pelvis where they may serve as nuclei for stone formation.Item Collagen fibrils and cell nuclei are entrapped within Randall's plaques but not in CaOx matrix overgrowth: A microscopic inquiry into Randall's plaque stone pathogenesis(Wiley, 2022) Canela, Victor Hugo; Bledsoe, Sharon B.; Worcester, Elaine M.; Lingeman, James E.; El-Achkar, Tarek M.; Williams, James C., Jr.; Anatomy, Cell Biology and Physiology, School of MedicineCalcium oxalate (CaOx) stones can grow attached to the renal papillary calcification known as Randall's plaque. Although stone growth on Randall's plaque is a common phenomenon, this mechanism of stone formation is still poorly understood. The objective of this study was to investigate the microenvironment of mature Randall's plaque, explore its molecular composition and differentiate plaque from CaOx overgrowth using multimodal imaging on demineralized stone sections. Fluorescence imaging showed consistent differences in autofluorescence patterns between Randall's plaque and calcium oxalate overgrowth regions. Second harmonic generation imaging established the presence of collagen only in regions of decalcified Randall's plaque but not in regions of CaOx overgrowth matrix. Surprisingly, in these stone sections we observed cell nuclei with preserved morphology within regions of mature Randall's plaque. These conserved cells had variable expression of vimentin and CD45. The presence of nuclei in mature plaque indicates that mineralization is not necessarily associated with cell death. The markers identified suggest that some of the entrapped cells may be undergoing dedifferentiation or could emanate from a mesenchymal or immune origin. We propose that entrapped cells may play an important role in the growth and maintenance of Randall's plaque. Further characterization of these cells and thorough analyses of the mineralized stone forming renal papilla will be fundamental in understanding the pathogenesis of Randall's plaque and CaOx stone formation.Item Connexin Mutants Cause Cataracts Through Deposition of Apatite(Frontiers Media, 2022-07-22) Minogue, Peter J.; Sommer, Andre J.; Williams, James C., Jr.; Bledsoe, Sharon B.; Beyer, Eric C.; Berthoud, Viviana M.; Anatomy, Cell Biology and Physiology, School of MedicineCataracts are lens opacities that are among the most common causes of blindness. It is commonly believed that cataracts develop through the accumulation of damage to lens proteins. However, recent evidence suggests that cataracts can result from calcium ion accumulation and the precipitation of calcium-containing salts. To test for the presence of precipitates and to identify their components, we studied the lenses of mice that develop cataracts due to mutations of connexin46 and connexin50. Micro-computed tomography showed the presence of radio-dense mineral in the mutant lenses, but not in wild-type lenses. Three-dimensional reconstructions of the scans showed that the distribution of the radio-dense mineral closely paralleled the location and morphology of the cataracts. The mutant lens homogenates also contained insoluble particles that stained with Alizarin red (a dye that stains Ca2+ deposits). Using attenuated total internal reflection micro–Fourier transform infrared spectroscopy, we identified the mineral as calcium phosphate in the form of apatite. Taken together, these data support the novel paradigm that cataracts are formed through pathological mineralization within the lens.Item Consultation on kidney stones, Copenhagen 2019: lithotripsy in percutaneous nephrolithotomy(Springer, 2021-06) Axelsson, Tomas Andri; Cracco, Cecilia; Desai, Mahesh; Hasan, Mudhar Nazar; Knoll, Thomas; Montanari, Emanuele; Pérez‑Fentes, Daniel; Straub, Michael; Thomas, Kay; Williams, James C., Jr.; Brehmer, Marianne; Osther, Palle J.S.; Anatomy and Cell Biology, School of MedicinePurpose: To evaluate the balance between existing evidence and expert opinions on the safety and efficacy of new technological improvements in lithotripsy techniques for percutaneous nephrolithotomy (PCNL). Methods: A scoping review approach was applied to search literature in Pubmed, Embase, and Web of Science. Consensus by key opinion leaders was reached at a 2-day meeting entitled "Consultation on Kidney Stones: Aspects of Intracorporeal Lithotripsy" held in Copenhagen, Denmark, in September 2019. Results: New-generation dual-mode single-probe lithotripsy devices have shown favourable results compared with use of ballistic or ultrasonic lithotripters only. However, ballistic and ultrasonic lithotripters are also highly effective and safe and have been the backbone of PCNL for many years. Compared with standard PCNL, it seems that mini PCNL is associated with fewer bleeding complications and shorter hospital admissions, but also with longer operating room (OR) time and higher intrarenal pressure. Use of laser lithotripsy combined with suction in mini PCNL is a promising alternative that may improve such PCNL by shortening OR times. Furthermore, supine PCNL is a good alternative, especially in cases with complex renal stones and large proximal ureteric stones; in addition, it facilitates endoscopic combined intrarenal surgery (ECIRS). Conclusion: Recent technological improvements in PCNL techniques are promising, but there is a lack of high-level evidence on safety and efficacy. Different techniques suit different types of stones and patients. The evolution of diverse methods has given urologists the possibility of a personalized stone approach, in other words, the right approach for the right patient.Item Correction to: Consultation on kidney stones, Copenhagen 2019: lithotripsy in percutaneous nephrolithotomy(Springer, 2021-06) Axelsson, Tomas Andri; Cracco, Cecilia; Desai, Mahesh; Hasan, Mudhar Nazar; Knoll, Thomas; Montanari, Emanuele; Pérez‑Fentes, Daniel; Straub, Michael; Thomas, Kay; Williams, James C., Jr.; Brehmer, Marianne; Osther, Palle J.S.; Anatomy and Cell Biology, School of Medicine