- Browse by Author
Browsing by Author "Weiss, James N."
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Apamin Does Not Inhibit Human Cardiac Na+ Current, L-type Ca2+ Current or Other Major K+ Currents(Public Library of Science, 2014-05-05) Yu, Chih-Chieh; Ai, Tomohiko; Weiss, James N.; Chen, Peng-Sheng; Medicine, School of MedicineBackground: Apamin is commonly used as a small-conductance Ca2+-activated K+ (SK) current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear. Objective: To test the hypothesis that apamin does not inhibit any major cardiac ion currents. Methods: We studied human embryonic kidney (HEK) 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration. Results: Ca2+ currents (CACNA1c+CACNB2b) were not affected by apamin (500 nM) (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS), but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008). Na+ currents (SCN5A) were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS), but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018). None of the major K+ currents (IKs, IKr, IK1 and Ito) were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20]; [37] to 23 [18]; [32] pA/pF; KCNH2+KCNE2, from 28 [24]; [30] to 27 [24]; [29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]). Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both). Conclusions: Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.Item Apamin-Sensitive Calcium-Activated Potassium Currents in Rabbit Ventricles with Chronic Myocardial Infarction(Wiley Online Library, 2013-10-24) Lee, Young Soo; Chang, Po-Cheng; Hsueh, Chia-Hsiang; Maruyama, Mitsunori; Park, Hyung Wook; Rhee, Kyoung-Suk; Hsieh, Yu-Cheng; Shen, Changyu; Weiss, James N.; Chen, Zhenhui; Lin, Shien-Fong; Chen, Peng-Sheng; Department of Medicine, IU School of MedicineIntroduction Apamin-sensitive small-conductance calcium-activated potassium current (IKAS) is increased in heart failure. It is unknown if myocardial infarction (MI) is also associated with an increase of IKAS. Methods and Results We performed Langendorff perfusion and optical mapping in 6 normal hearts and 10 hearts with chronic (5 weeks) MI. An additional 6 normal and 10 MI hearts were used for patch clamp studies. The infarct size was 25% [95% confidence interval, 20 to 31] and the left ventricular ejection fraction was 0.5 [0.46 to 0.54]. The rabbits did not have symptoms of heart failure. The action potential duration measured to 80% repolarization (APD80) in the peri-infarct zone (PZ) was150 [142 to 159] ms, significantly (p=0.01) shorter than in the normal ventricles (158 to 177] ms). The intracellular Ca transient duration was also shorter in the PZ (148 [139 to 157] ms) than in normal ventricles (168 [157 to 180] ms; P=0.017). Apamin prolonged the APD80 in PZ by 9.8 [5.5 to 14.1] %, which is greater than in normal ventricles (2.8 [1.3 to 4.3] %, p=0.006). Significant shortening of APD80 was observed at the cessation of rapid pacing in MI but not in normal ventricles. Apamin prevented postpacing APD80 shortening. Patch clamp studies showed that IKAS was significantly higher in the PZ cells (2.51 [1.55 to 3.47] pA/pF, N=17) than in the normal cells (1.08 [0.36 to 1.80] pA/pF, N=15, p=0.019). Conclusion We conclude that IKAS is increased in MI ventricles and contributes significantly to ventricular repolarization especially during tachycardia.Item Concomitant SK current activation and sodium current inhibition cause J wave syndrome(American Society for Clinical Investigation, 2018-11-15) Chen, Mu; Xu, Dong-Zhu; Wu, Adonis Z.; Guo, Shuai; Wan, Juyi; Yin, Dechun; Lin, Shien-Fong; Chen, Zhenhui; Rubart-von der Lohe, Michael; Everett, Thomas H., IV; Qu, Zhilin; Weiss, James N.; Chen, Peng-Sheng; Medicine, School of MedicineThe mechanisms of J wave syndrome (JWS) are incompletely understood. Here, we showed that the concomitant activation of small-conductance calcium-activated potassium (SK) current (IKAS) and inhibition of sodium current by cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) recapitulate the phenotypes of JWS in Langendorff-perfused rabbit hearts. CyPPA induced significant J wave elevation and frequent spontaneous ventricular fibrillation (SVF), as well as sinus bradycardia, atrioventricular block, and intraventricular conduction delay. IKAS activation by CyPPA resulted in heterogeneous shortening of action potential (AP) duration (APD) and repolarization alternans. CyPPA inhibited cardiac sodium current (INa) and decelerated AP upstroke and intracellular calcium transient. SVFs were typically triggered by short-coupled premature ventricular contractions, initiated with phase 2 reentry and originated more frequently from the right than the left ventricles. Subsequent IKAS blockade by apamin reduced J wave elevation and eliminated SVF. β-Adrenergic stimulation was antiarrhythmic in CyPPA-induced electrical storm. Like CyPPA, hypothermia (32.0°C) also induced J wave elevation and SVF. It facilitated negative calcium-voltage coupling and phase 2 repolarization alternans with spatial and electromechanical discordance, which were ameliorated by apamin. These findings suggest that IKAS activation contributes to the development of JWS in rabbit ventricles.Item Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction(Ovid Technologies Wolters Kluwer -American Heart Association, 2012-10) Xi, Yutao; Ai, Tomohiko; De Lange, Enno; Li, Zhaohui; Wu, Geru; Brunelli, Luca; Kyle, W. Buck; Turker, Isik; Cheng, Jie; Ackerman, Michael J.; Kimura, Akinori; Weiss, James N.; Qu, Zhilin; Kim, Jeffrey J.; Faulkner, Georgine; Vatta, Matteo; Department of Medicine, IU School of MedicineBACKGROUND: Defects of cytoarchitectural proteins can cause left ventricular noncompaction, which is often associated with conduction system diseases. We have previously identified a p.D117N mutation in the LIM domain-binding protein 3-encoding Z-band alternatively spliced PDZ motif gene (ZASP) in a patient with left ventricular noncompaction and conduction disturbances. We sought to investigate the role of p.D117N mutation in the LBD3 NM_001080114.1 isoform (ZASP1-D117N) for the regulation of cardiac sodium channel (Na(v)1.5) that plays an important role in the cardiac conduction system. METHODS AND RESULTS: Effects of ZASP1-wild-type and ZASP1-D117N on Na(v)1.5 were studied in human embryonic kidney-293 cells and neonatal rat cardiomyocytes. Patch-clamp study demonstrated that ZASP1-D117N significantly attenuated I(Na) by 27% in human embryonic kidney-293 cells and by 32% in neonatal rat cardiomyocytes. In addition, ZASP1-D117N rightward shifted the voltage-dependent activation and inactivation in both systems. In silico simulation using Luo-Rudy phase 1 model demonstrated that altered Na(v)1.5 function can reduce cardiac conduction velocity by 28% compared with control. Pull-down assays showed that both wild-type and ZASP1-D117N can complex with Na(v)1.5 and telethonin/T-Cap, which required intact PDZ domains. Immunohistochemical staining in neonatal rat cardiomyocytes demonstrates that ZASP1-D117N did not significantly disturb the Z-line structure. Disruption of cytoskeletal networks with 5-iodonaphthalene-1-sulfonyl homopiperazine and cytochalasin D abolished the effects of ZASP1-D117N on Na(v)1.5. CONCLUSIONS: ZASP1 can form protein complex with telethonin/T-Cap and Na(v)1.5. The left ventricular noncompaction-specific ZASP1 mutation can cause loss of function of Na(v)1.5, without significant alteration of the cytoskeletal protein complex. Our study suggests that electric remodeling can occur in left ventricular noncompaction subject because of a direct effect of mutant ZASP on Na(v)1.5.Item Perspective: a dynamics-based classification of ventricular arrhythmias(Elsevier, 2015-05) Weiss, James N.; Garfinkel, Alan; Karagueuzian, Hrayr S.; Nguyen, Thao P.; Olcese, Riccardo; Chen, Peng-Sheng; Qu, Zhilin; Department of Medicine, IU School of MedicineDespite key advances in the clinical management of life-threatening ventricular arrhythmias, culminating with the development of implantable cardioverter-defibrillators and catheter ablation techniques, pharmacologic/biologic therapeutics have lagged behind. The fundamental issue is that biological targets are molecular factors. Diseases, however, represent emergent properties at the scale of the organism that result from dynamic interactions between multiple constantly changing molecular factors. For a pharmacologic/biologic therapy to be effective, it must target the dynamic processes that underlie the disease. Here we propose a classification of ventricular arrhythmias that is based on our current understanding of the dynamics occurring at the subcellular, cellular, tissue and organism scales, which cause arrhythmias by simultaneously generating arrhythmia triggers and exacerbating tissue vulnerability. The goal is to create a framework that systematically links these key dynamic factors together with fixed factors (structural and electrophysiological heterogeneity) synergistically promoting electrical dispersion and increased arrhythmia risk to molecular factors that can serve as biological targets. We classify ventricular arrhythmias into three primary dynamic categories related generally to unstable Ca cycling, reduced repolarization, and excess repolarization, respectively. The clinical syndromes, arrhythmia mechanisms, dynamic factors and what is known about their molecular counterparts are discussed. Based on this framework, we propose a computational-experimental strategy for exploring the links between molecular factors, fixed factors and dynamic factors that underlie life-threatening ventricular arrhythmias. The ultimate objective is to facilitate drug development by creating an in silico platform to evaluate and predict comprehensively how molecular interventions affect not only a single targeted arrhythmia, but all primary arrhythmia dynamics categories as well as normal cardiac excitation-contraction coupling.Item Role of apamin sensitive small conductance calcium-activated potassium currents in long term cardiac memory in rabbits(Elsevier, 2018) Yin, Dechun; Chen, Mu; Yang, Na; Wu, Adonis Z.; Xu, Dongzhu; Tsai, Wei-Chung; Yuan, Yuan; Tian, Zhipeng; Chan, Yi-Hsin; Shen, Changyu; Chen, Zhenhui; Lin, Shien-Fong; Weiss, James N.; Chen, Peng-Sheng; Everett, Thomas H., IV.; Medicine, School of MedicineBackground Apamin-sensitive small conductance calcium-activated K current (IKAS) is upregulated during ventricular pacing and masks short-term cardiac memory (CM). Objective – To determine the role of IKAS in long-term CM. Methods – CM was created with 3-5 weeks of ventricular pacing and defined by a flat or inverted T-wave off pacing. Epicardial optical mapping was performed in both paced and normal ventricles. Action potential duration (APD80) was determined during RA pacing. Ventricular stability was tested before and after IKAS blockade. Four paced hearts and 4 normal hearts were used for western blotting and histology. Results – There were no significant differences in either the echocardiographic parameters or in fibrosis levels between groups. Apamin induced more APD80 prolongation in CM than in normal ventricles (9.6% [8.8%-10.5%] vs 3.1% [1.9%-4.3%], p<0.001). Apamin significantly lengthend the APD80 in the CM model at late activation sites, indicating significant IKAS upregulation at those sites. The CM model also had altered Ca2+ handling as the 50% Ca2+ transient duration and amplitude were increased at distal sites compared to a proximal site (near the pacing site). After apamin, the CM model had increased VF inducibility (paced vs control, 33/40 (82.5%) vs 7/20 (35%) P<0.001), and longer VF durations (124 vs 26 seconds, P<0.001). Conclusions Chronic ventricular pacing increases Ca2+ transients at late activation sites which activates IKAS to maintain repolarization reserve. IKAS blockade increases VF vulnerability in chronically paced rabbit ventricles.Item Sex-specific IKAS activation in rabbit ventricles with drug-induced QT prolongation(Elsevier, 2021) Wu, Adonis Z.; Chen, Mu; Yin, Dechun; Everett, Thomas H., IV.; Chen, Zhenhui; Rubart, Michael; Weiss, James N.; Qu, Zhilin; Chen, Peng-Sheng; Medicine, School of MedicineBackground: Female sex is a known risk factor for drug-induced long QT syndrome (diLQTS). We recently demonstrated a sex difference in apamin-sensitive small-conductance Ca2+-activated K+ current (IKAS) activation during β-adrenergic stimulation. Objective: The purpose of this study was to test the hypothesis that there is a sex difference in IKAS in the rabbit models of diLQTS. Methods: We evaluated the sex difference in ventricular repolarization in 15 male and 22 female Langendorff-perfused rabbit hearts with optical mapping techniques during atrial pacing. HMR1556 (slowly activating delayed rectifier K+ current [IKs] blocker), E4031 (rapidly activating delayed rectifier K+ current [IKr] blocker) and sea anemone toxin (ATX-II, late Na+ current [INaL] activator) were used to simulate types 1-3 long QT syndrome, respectively. Apamin, an IKAS blocker, was then added to determine the magnitude of further QT prolongation. Results: HMR1556, E4031, and ATX-II led to the prolongation of action potential duration at 80% repolarization (APD80) in both male and female ventricles at pacing cycle lengths of 300-400 ms. Apamin further prolonged APD80 (pacing cycle length 350 ms) from 187.8±4.3 to 206.9±7.1 (P=.014) in HMR1556-treated, from 209.9±7.8 to 224.9±7.8 (P=.003) in E4031-treated, and from 174.3±3.3 to 188.1±3.0 (P=.0002) in ATX-II-treated female hearts. Apamin did not further prolong the APD80 in male hearts. The Cai transient duration (CaiTD) was significantly longer in diLQTS than baseline but without sex differences. Apamin did not change CaiTD. Conclusion: We conclude that IKAS is abundantly increased in female but not in male ventricles with diLQTS. Increased IKAS helps preserve the repolarization reserve in female ventricles treated with IKs and IKr blockers or INaL activators.Item Sex‐specific activation of SK current by isoproterenol facilitates action potential triangulation and arrhythmogenesis in rabbit ventricles(Wiley, 2018) Chen, Mu; Yin, Dechun; Guo, Shuai; Xu, Dong-Zhu; Wang, Zhuo; Chen, Zhenhui; Rubart-von der Lohe, Michael; Lin, Shien-Fong; Everett, Thomas H., IV; Weiss, James N.; Chen, Peng-Sheng; Medicine, School of MedicineSex has a large influence on cardiac electrophysiological properties. Whether sex differences exist in apamin‐sensitive small conductance Ca2+‐activated K+ (SK) current (IKAS) remains unknown. We performed optical mapping, transmembrane potential, patch clamp, western blot and immunostaining in 62 normal rabbit ventricles, including 32 females and 30 males. IKAS blockade by apamin only minimally prolonged action potential (AP) duration (APD) in the basal condition for both sexes, but significantly prolonged APD in the presence of isoproterenol in females. Apamin prolonged APD at the level of 25% repolarization (APD25) more prominently than APD at the level of 80% repolarization (APD80), consequently reversing isoproterenol‐induced AP triangulation in females. In comparison, apamin prolonged APD to a significantly lesser extent in males and failed to restore the AP plateau during isoproterenol infusion. IKAS in males did not respond to the L‐type calcium current agonist BayK8644, but was amplified by the casein kinase 2 (CK2) inhibitor 4,5,6,7‐tetrabromobenzotriazole. In addition, whole‐cell outward IKAS densities in ventricular cardiomyocytes were significantly larger in females than in males. SK channel subtype 2 (SK2) protein expression was higher and the CK2/SK2 ratio was lower in females than in males. IKAS activation in females induced negative intracellular Ca2+–voltage coupling, promoted electromechanically discordant phase 2 repolarization alternans and facilitated ventricular fibrillation (VF). Apamin eliminated the negative Ca2+–voltage coupling, attenuated alternans and reduced VF inducibility, phase singularities and dominant frequencies in females, but not in males. We conclude that β‐adrenergic stimulation activates ventricular IKAS in females to a much greater extent than in males. IKAS activation plays an important role in ventricular arrhythmogenesis in females during sympathetic stimulation.Item Simultaneous activation of the small conductance calcium-activated potassium current by acetylcholine and inhibition of sodium current by ajmaline cause J-wave syndrome in Langendorff-perfused rabbit ventricles(Elsevier, 2021) Fei, Yu-Dong; Chen, Mu; Guo, Shuai; Ueoka, Akira; Chen, Zhenhui; Rubart-von der Lohe, Michael; Everett, Thomas H., IV.; Qu, Zhilin; Weiss, James N.; Chen, Peng-Sheng; Medicine, School of MedicineBackground: Concomitant apamin-sensitive small conductance calcium-activated potassium current (IKAS) activation and sodium current inhibition induce J-wave syndrome (JWS) in rabbit hearts. Sudden death in JWS occurs predominantly in men at night when parasympathetic tone is strong. Objective: The purpose of this study was to test the hypotheses that acetylcholine (ACh), the parasympathetic transmitter, activates IKAS and causes JWS in the presence of ajmaline. Methods: We performed optical mapping in Langendorff-perfused rabbit hearts and whole-cell voltage clamp to determine IKAS in isolated ventricular cardiomyocytes. Results: ACh (1 μM) + ajmaline (2 μM) induced J-point elevations in all (6 male and 6 female) hearts from 0.01± 0.01 to 0.31 ± 0.05 mV (P<.001), which were reduced by apamin (specific IKAS inhibitor, 100 nM) to 0.14 ± 0.02 mV (P<.001). More J-point elevation was noted in male than in female hearts (P=.037). Patch clamp studies showed that ACh significantly (P<.001) activated IKAS in isolated male but not in female ventricular myocytes (n=8). Optical mapping studies showed that ACh induced action potential duration (APD) heterogeneity, which was more significant in right than in left ventricles. Apamin in the presence of ACh prolonged both APD at the level of 25% (P<.001) and APD at the level of 80% (P<.001) and attenuated APD heterogeneity. Ajmaline further increased APD heterogeneity induced by ACh. Ventricular arrhythmias were induced in 6 of 6 male and 1 of 6 female hearts (P=.015) in the presence of ACh and ajmaline, which was significantly suppressed by apamin in the former. Conclusion: ACh activates ventricular IKAS. ACh and ajmaline induce JWS and facilitate the induction of ventricular arrhythmias more in male than in female ventricles.Item The Small Conductance Calcium Activated Potassium Current Modulates the Ventricular Escape Rhythm in Normal Rabbit Hearts(Elsevier, 2018) Wan, Juyi; Chen, Mu; Wang, Zhuo; Everett, Thomas H., IV; Rubart-von der Lohe, Michael; Shen, Changyu; Qu, Zhilin; Weiss, James N.; Boyden, Penelope A.; Chen, Peng-Sheng; Medicine, School of MedicineBackground The apamin-sensitive small-conductance calcium-activated K (SK) current (IKAS) modulates automaticity of the sinus node; IKAS blockade by apamin causes sinus bradycardia. Objective To test the hypothesis that IKAS modulates ventricular automaticity. Methods We tested the effects of apamin (100 nM) on ventricular escape rhythms in Langendorff perfused rabbit ventricles with atrioventricular (AV) block (Protocol 1) and on recorded transmembrane action potential (TMP) of pseudotendons of superfused right ventricular (RV) endocardial preparations (Protocol 2). Results All preparations exhibited spontaneous ventricular escape rhythms. In Protocol 1, apamin decreased the atrial rate from 186.2±18.0 bpm to 163.8±18.7 bpm (N=6, p=0.006) but accelerated the ventricular escape rate from 51.5±10.7 to 98.2±25.4 bpm (p=0.031). Three preparations exhibited bursts of nonsustained ventricular tachycardia (NSVT) and pauses, resulting in repeated burst-termination pattern. In Protocol 2, apamin increased the ventricular escape rate from 70.2±13.1 to 110.1±2.2 bpm (p=0.035). Spontaneous phase 4 depolarization was recorded from the pseudotendons in 6 of 10 preparations at baseline and in 3 in the presence of apamin. There were no changes of phase 4 slope (18.37±3.55 vs. 18.93±3.26 mV/s, p=0.231, N=3), but the threshold of phase 0 activation (mV) reduced from -67.97±1.53 to -75.26±0.28 (p=0.034). Addition of JTV-519, a ryanodine receptor 2 (RyR2) stabilizer, in 5 preparations reduced escape rate back to baseline. Conclusions Contrary to its bradycardic effect in the sinus node, IKAS blockade by apamin accelerates ventricular automaticity and causes repeated NSVT in normal ventricles. RyR2 blockade reversed the apamin effects on ventricular automaticity.