- Browse by Author
Browsing by Author "Ware, Stephanie M."
Now showing 1 - 10 of 66
Results Per Page
Sort Options
Item A multi-disciplinary, comprehensive approach to management of children with heterotaxy(BMC, 2022-09-09) Saba, Thomas G.; Geddes, Gabrielle C.; Ware, Stephanie M.; Schidlow, David N.; del Nido, Pedro J.; Rubalcava, Nathan S.; Gadepalli, Samir K.; Stillwell, Terri; Griffiths, Anne; Bennett Murphy, Laura M.; Barber, Andrew T.; Leigh, Margaret W.; Sabin, Necia; Shapiro, Adam J.; Medical and Molecular Genetics, School of MedicineHeterotaxy (HTX) is a rare condition of abnormal thoraco-abdominal organ arrangement across the left-right axis of the body. The pathogenesis of HTX includes a derangement of the complex signaling at the left-right organizer early in embryogenesis involving motile and non-motile cilia. It can be inherited as a single-gene disorder, a phenotypic feature of a known genetic syndrome or without any clear genetic etiology. Most patients with HTX have complex cardiovascular malformations requiring surgical intervention. Surgical risks are relatively high due to several serious comorbidities often seen in patients with HTX. Asplenia or functional hyposplenism significantly increase the risk for sepsis and therefore require antimicrobial prophylaxis and immediate medical attention with fever. Intestinal rotation abnormalities are common among patients with HTX, although volvulus is rare and surgical correction carries substantial risk. While routine screening for intestinal malrotation is not recommended, providers and families should promptly address symptoms concerning for volvulus and biliary atresia, another serious morbidity more common among patients with HTX. Many patients with HTX have chronic lung disease and should be screened for primary ciliary dyskinesia, a condition of respiratory cilia impairment leading to bronchiectasis. Mental health and neurodevelopmental conditions need to be carefully considered among this population of patients living with a substantial medical burden. Optimal care of children with HTX requires a cohesive team of primary care providers and experienced subspecialists collaborating to provide compassionate, standardized and evidence-based care. In this statement, subspecialty experts experienced in HTX care and research collaborated to provide expert- and evidence-based suggestions addressing the numerous medical issues affecting children living with HTX.Item A Multicenter Analysis of Abnormal Chromosomal Microarray Findings in Congenital Heart Disease(American Heart Association, 2023) Landis, Benjamin J.; Helvaty, Lindsey R.; Geddes, Gabrielle C.; Lin, Jiuann-Huey Ivy; Yatsenko, Svetlana A.; Lo, Cecilia W.; Border, William L.; Burns Wechsler, Stephanie; Murali, Chaya N.; Azamian, Mahshid S.; Lalani, Seema R.; Hinton, Robert B.; Garg, Vidu; McBride, Kim L.; Hodge, Jennelle C.; Ware, Stephanie M.; Pediatrics, School of MedicineBackground: Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype–phenotype relationships. Methods and Results: Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers. Highly detailed cardiac phenotypes were systematically classified and analyzed for their association with CMA abnormality. Hierarchical classification of each patient into 1 CHD category facilitated broad analyses. Inclusive classification allowing multiple CHD types per patient provided sensitive descriptions. In 1363 registry patients, 28% had genomic disorders with well‐recognized CHD association, 67% had clinically reported copy number variants (CNVs) with rare or no prior CHD association, and 5% had regions of homozygosity without CNV. Hierarchical classification identified expected CHD categories in genomic disorders, as well as uncharacteristic CHDs. Inclusive phenotyping provided sensitive descriptions of patients with multiple CHD types, which occurred commonly. Among CNVs with rare or no prior CHD association, submicroscopic CNVs were enriched for more complex types of CHD compared with large CNVs. The submicroscopic CNVs that contained a curated CHD gene were enriched for left ventricular obstruction or septal defects, whereas CNVs containing a single gene were enriched for conotruncal defects. Neuronal‐related pathways were over‐represented in single‐gene CNVs, including top candidate causative genes NRXN3, ADCY2, and HCN1. Conclusions: Intensive cardiac phenotyping in multisite registry data identifies genotype–phenotype associations in CHD patients with abnormal CMA.Item Adolescents with Congenital Heart Disease: a Patient and Parental Perspective of Genetic Information and Genetic Risk(Cambridge University Press, 2020-02) Crawford, Christopher A.; Vujakovich, Courtney E.; Elmore, Lindsey; Fleming, Emily; Landis, Benjamin J.; Spoonamore, Katie G.; Ware, Stephanie M.; Pediatrics, School of MedicineCongenital heart defects (CHDs) occur in 8 of 1000 live-born children, making them common birth defects in the adolescent population. CHDs may have single gene, chromosomal, or multifactorial causes. Despite evidence that patients with CHD want information on heritability and genetics, no studies have investigated the interest or knowledge base in the adolescent population. This information is necessary as patients in adolescence take greater ownership of their health care and discuss reproductive risks with their physicians. The objectives of this survey-based study were to determine adolescents' recall of their own heart condition, to assess patient and parent perception of the genetic contribution to the adolescent's CHD, and to obtain information about the preferred method(s) for education. The results show that adolescent patients had good recall of their type of CHD. Less than half of adolescents and parents believed their CHD had a genetic basis or was heritable; however, adolescents with a positive family history of CHD were more likely to believe that their condition was genetic (p = 0.0005). The majority of patients were interested in receiving additional genetics education and preferred education in-person and in consultation with both parents and a physician. The adolescents who felt most competent to have discussions with their doctors regarding potential causes of their heart defect previously had a school science course which covered topics in genetics. These results provide insight into adolescents' perceptions and understanding about their CHD and genetic risk and may inform the creation and provision of additional genetic education.Item The analysis of heterotaxy patients reveals new loss-of-function variants of GRK5(SpringerNature, 2016-09-13) Lessel, Davor; Muhammad, Tariq; Tena, Teresa Casar; Moepps, Barbara; Burkhalter, Martin D.; Hitz, Marc-Phillip; Toka, Okan; Rentzsch, Axel; Schubert, Stephan; Schalinski, Adelheid; Bauer, Ulrike M. M.; Kubisch, Christian; Ware, Stephanie M.; Philipp, Melanie; Department of Pediatrics, IU School of MedicineG protein-coupled receptor kinase 5 (GRK5) is a regulator of cardiac performance and a potential therapeutic target in heart failure in the adult. Additionally, we have previously classified GRK5 as a determinant of left-right asymmetry and proper heart development using zebrafish. We thus aimed to identify GRK5 variants of functional significance by analysing 187 individuals with laterality defects (heterotaxy) that were associated with a congenital heart defect (CHD). Using Sanger sequencing we identified two moderately frequent variants in GRK5 with minor allele frequencies <10%, and seven very rare polymorphisms with minor allele frequencies <1%, two of which are novel variants. Given their evolutionarily conserved position in zebrafish, in-depth functional characterisation of four variants (p.Q41L, p.G298S, p.R304C and p.T425M) was performed. We tested the effects of these variants on normal subcellular localisation and the ability to desensitise receptor signalling as well as their ability to correct the left-right asymmetry defect upon Grk5l knockdown in zebrafish. While p.Q41L, p.R304C and p.T425M responded normally in the first two aspects, neither p.Q41L nor p.R304C were capable of rescuing the lateralisation phenotype. The fourth variant, p.G298S was identified as a complete loss-of-function variant in all assays and provides insight into the functions of GRK5.Item Aortopathy in the 7q11.23 microduplication syndrome(Wiley, 2015-02) Parrott, Ashley; James, Jeanne; Goldenberg, Paula; Hinton, Robert B.; Miller, Erin; Shikany, Amy; Aylsworth, Arthur S.; Kaiser-Rogers, Kathleen; Ferns, Sunita J.; Lalani, Seema R.; Ware, Stephanie M.; Department of Pediatrics, IU School of MedicineThe 7q11.23 microduplication syndrome, caused by the reciprocal duplication of the Williams-Beuren syndrome deletion region, is a genomic disorder with an emerging clinical phenotype. Dysmorphic features, congenital anomalies, hypotonia, developmental delay highlighted by variable speech delay, and autistic features are characteristic findings. Congenital heart defects, most commonly patent ductus arteriosus, have been reported in a minority of cases. Included in the duplicated region is elastin (ELN), implicated as the cause of supravalvar aortic stenosis in patients with Williams–Beuren syndrome. Here we present a series of eight pediatric patients and one adult with 7q11.23 microduplication syndrome, all of whom had aortic dilation, the opposite vascular phenotype of the typical supravalvar aortic stenosis found in Williams–Beuren syndrome. The ascending aorta was most commonly involved, while dilation was less frequently identified at the aortic root and sinotubular junction. The findings in these patients support a recommendation for cardiovascular surveillance in patients with 7q11.23 microduplication syndrome.Item Approaches to Studying Outcomes in Patients With Congenital Heart Disease With Genetic Syndromes: What Down Syndrome Can Teach Us(American Heart Association, 2024) Ware, Stephanie M.; Medical and Molecular Genetics, School of MedicineItem Bicuspid Aortic Valve: a Review with Recommendations for Genetic Counseling(Springer, 2016-12) Freeze, Samantha L.; Landis, Benjamin J.; Ware, Stephanie M.; Helm, Benjamin M.; Department of Pediatrics, IU School of MedicineBicuspid aortic valve (BAV) is the most common congenital heart defect and falls in the spectrum of left-sided heart defects, also known as left ventricular outflow tract obstructive (LVOTO) defects. BAV is often identified in otherwise healthy, asymptomatic individuals, but it is associated with serious long term health risks including progressive aortic valve disease (stenosis or regurgitation) and thoracic aortic aneurysm and dissection. BAV and other LVOTO defects have high heritability. Although recommendations for cardiac screening of BAV in at-risk relatives exist, there are no standard guidelines for providing genetic counseling to patients and families with BAV. This review describes current knowledge of BAV and associated aortopathy and provides guidance to genetic counselors involved in the care of patients and families with these malformations. The heritability of BAV and recommendations for screening are highlighted. While this review focuses specifically on BAV, the principles are applicable to counseling needs for other LVOTO defects.Item Cardiac biomarkers in pediatric cardiomyopathy: Study design and recruitment results from the Pediatric Cardiomyopathy Registry(Elsevier, 2019-06-01) Everitt, Melanie D.; Wilkinson, James D.; Shi, Ling; Towbin, Jeffrey A.; Colan, Steven D.; Kantor, Paul F.; Canter, Charles E.; Webber, Steven A.; Hsu, Daphne T.; Pahl, Elfriede; Addonizio, Linda J.; Dodd, Debra A.; Jefferies, John L.; Rossano, Joseph W.; Feingold, Brian; Ware, Stephanie M.; Lee, Teresa M.; Godown, Justin; Simpson, Kathleen E.; Sleeper, Lynn A.; Czachor, Jason D.; Razoky, Hiedy; Hill, Ashley; Westphal, Joslyn; Molina, Kimberly M.; Lipshultz, Steven E.; Pediatrics, School of MedicineBackground: Cardiomyopathies are a rare cause of pediatric heart disease, but they are one of the leading causes of heart failure admissions, sudden death, and need for heart transplant in childhood. Reports from the Pediatric Cardiomyopathy Registry (PCMR) have shown that almost 40% of children presenting with symptomatic cardiomyopathy either die or undergo heart transplant within 2 years of presentation. Little is known regarding circulating biomarkers as predictors of outcome in pediatric cardiomyopathy. Study Design: The Cardiac Biomarkers in Pediatric Cardiomyopathy (PCM Biomarkers) study is a multi-center prospective study conducted by the PCMR investigators to identify serum biomarkers for predicting outcome in children with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Patients less than 21 years of age with either DCM or HCM were eligible. Those with DCM were enrolled into cohorts based on time from cardiomyopathy diagnosis: categorized as new onset or chronic. Clinical endpoints included sudden death and progressive heart failure. Results: There were 288 children diagnosed at a mean age of 7.2±6.3 years who enrolled in the PCM Biomarkers Study at a median time from diagnosis to enrollment of 1.9 years. There were 80 children enrolled in the new onset DCM cohort, defined as diagnosis at or 12 months prior to enrollment. The median age at diagnosis for the new onset DCM was 1.7 years and median time from diagnosis to enrollment was 0.1 years. There were 141 children enrolled with either chronic DCM or chronic HCM, defined as children ≥2 years from diagnosis to enrollment. Among children with chronic cardiomyopathy, median age at diagnosis was 3.4 years and median time from diagnosis to enrollment was 4.8 years. Conclusion: The PCM Biomarkers study is evaluating the predictive value of serum biomarkers to aid in the prognosis and management of children with DCM and HCM. The results will provide valuable information where data are lacking in children. Clinical Trial Registration: NCT01873976 https://clinicaltrials.gov/ct2/show/NCT01873976?term=PCM+Biomarker&rank=1Item Cardiac Imaging and Biomarkers for Assessing Myocardial Fibrosis in Children with Hypertrophic Cardiomyopathy(Elsevier, 2023) Kirmani, Sonya; Woodard, Pamela K.; Shi, Ling; Hamza, Taye H.; Canter, Charles E.; Colan, Steven D.; Pahl, Elfriede; Towbin, Jeffrey A.; Webber, Steven A.; Rossano, Joseph W.; Everitt, Melanie D.; Molina, Kimberly M.; Kantor, Paul F.; Jefferies, John L.; Feingold, Brian; Addonizio, Linda J.; Ware, Stephanie M.; Chung, Wendy K.; Ballweg, Jean A.; Lee, Teresa M.; Bansal, Neha; Razoky, Hiedy; Czachor, Jason; Lunze, Fatima I.; Marcus, Edward; Commean, Paul; Wilkinson, James D.; Lipshultz, Steven E.; Pediatrics, School of MedicineBackground: Myocardial fibrosis, as diagnosed on cardiac magnetic resonance imaging (cMRI) by late gadolinium enhancement (LGE), is associated with adverse outcomes in adults with hypertrophic cardiomyopathy (HCM), but its prevalence and magnitude in children with HCM have not been established. We investigated: (1) the prevalence and extent of myocardial fibrosis as detected by LGE cMRI; (2) the agreement between echocardiographic and cMRI measurements of cardiac structure; and (3) whether serum concentrations of N-terminal pro hormone B-type natriuretic peptide (NT-proBNP) and cardiac troponin-T are associated with cMRI measurements. Methods: A cross-section of children with HCM from 9 tertiary-care pediatric heart centers in the U.S. and Canada were enrolled in this prospective NHLBI study of cardiac biomarkers in pediatric cardiomyopathy (ClinicalTrials.gov Identifier: NCT01873976). The median age of the 67 participants was 13.8 years (range 1-18 years). Core laboratories analyzed echocardiographic and cMRI measurements, and serum biomarker concentrations. Results: In 52 children with non-obstructive HCM undergoing cMRI, overall low levels of myocardial fibrosis with LGE >2% of left ventricular (LV) mass were detected in 37 (71%) (median %LGE, 9.0%; IQR: 6.0%, 13.0%; range, 0% to 57%). Echocardiographic and cMRI measurements of LV dimensions, LV mass, and interventricular septal thickness showed good agreement using the Bland-Altman method. NT-proBNP concentrations were strongly and positively associated with LV mass and interventricular septal thickness (P < .001), but not LGE. Conclusions: Low levels of myocardial fibrosis are common in pediatric patients with HCM seen at referral centers. Longitudinal studies of myocardial fibrosis and serum biomarkers are warranted to determine their predictive value for adverse outcomes in pediatric patients with HCM.Item Cardiac Troponin I-interacting Kinase impacts cardiomyocyte S-phase activity but not cardiomyocyte proliferation(American Heart Association, 2023) Reuter, Sean P.; Soonpaa, Mark H.; Field, Dorothy; Simpson, Ed; Rubart-von der Lohe, Michael; Lee, Han Kyu; Sridhar, Arthi; Ware, Stephanie M.; Green, Nick; Li, Xiaochun; Ofner, Susan; Marchuk, Douglas A.; Wollert, Kai C.; Field, Loren J.; Pediatrics, School of MedicineBackground: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. Methods: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. Results: (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. Conclusions: These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.