- Browse by Author
Browsing by Author "Wang, Zhilin"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Blockchain and Federated Edge Learning for Privacy-Preserving Mobile Crowdsensing(IEEE Xplore, 2021-11) Hu, Qin; Wang, Zhilin; Xu, Minghui; Cheng, Xiuzhen; Computer and Information Science, School of ScienceMobile crowdsensing (MCS) counting on the mobility of massive workers helps the requestor accomplish various sensing tasks with more flexibility and lower cost. However, for the conventional MCS, the large consumption of communication resources for raw data transmission and high requirements on data storage and computing capability hinder potential requestors with limited resources from using MCS. To facilitate the widespread application of MCS, we propose a novel MCS learning framework leveraging on blockchain technology and the new concept of edge intelligence based on federated learning (FL), which involves four major entities, including requestors, blockchain, edge servers and mobile devices as workers. Even though there exist several studies on blockchain-based MCS and blockchain-based FL, they cannot solve the essential challenges of MCS with respect to accommodating resource-constrained requestors or deal with the privacy concerns brought by the involvement of requestors and workers in the learning process. To fill the gaps, four main procedures, i.e., task publication, data sensing and submission, learning to return final results, and payment settlement and allocation, are designed to address major challenges brought by both internal and external threats, such as malicious edge servers and dishonest requestors. Specifically, a mechanism design based data submission rule is proposed to guarantee the data privacy of mobile devices being truthfully preserved at edge servers; consortium blockchain based FL is elaborated to secure the distributed learning process; and a cooperation-enforcing control strategy is devised to elicit full payment from the requestor. Extensive simulations are carried out to evaluate the performance of our designed schemes.Item Blockchain-based Edge Resource Sharing for Metaverse(IEEE, 2022-10) Wang, Zhilin; Hut, Qin; Xu, Minghui; Jiang, Honglu; Computer and Information Science, School of ScienceAlthough Metaverse has recently been widely studied, its practical application still faces many challenges. One of the severe challenges is the lack of sufficient resources for computing and communication on local devices, resulting in the inability to access the Metaverse services. To address this issue, this paper proposes a practical blockchain-based mobile edge computing (MEC) platform for resource sharing and optimal utilization to complete the requested offloading tasks, given the heterogeneity of servers' available resources and that of users' task requests. To be specific, we first elaborate the design of our proposed system and then dive into the task allocation mechanism to assign offloading tasks to proper servers. To solve the multiple task allocation (MTA) problem in polynomial time, we devise a learning-based algorithm. Since the objective function and constraints of MTA are significantly affected by the servers uploading the tasks, we reformulate it as a reinforcement learning problem and calculate the rewards for each state and action considering the influences of servers. Finally, numerous experiments are conducted to demonstrate the effectiveness and efficiency of our proposed system and algorithms.Item A Correlated Equilibrium based Transaction Pricing Mechanism in Blockchain(IEEE, 2020-05) Hu, Qin; Nigam, Yash; Wang, Zhilin; Wang, Yawei; Xiao, Yinhao; Computer and Information Science, School of ScienceAlthough transaction fees are not obligatory in most of the current blockchain systems, extensive studies confirm their importance in maintaining the security and sustainability of blockchain. To enhance blockchain in the long term, it is crucial to design effective transaction pricing mechanisms. Different from the existing schemes based on auctions with more consideration about the profit of miners, we resort to game theory and propose a correlated equilibrium based transaction pricing mechanism through solving a pricing game among users with transactions, which can achieve both the individual and global optimum. To avoid the computational complexity exponentially increasing with the number of transactions, we further improve the game-theoretic solution with an approximate algorithm, which can derive almost the same results as the original one but costs significantly reduced time. Experimental results demonstrate the effectiveness and efficiency of our proposed mechanism.Item Defense Strategies Toward Model Poisoning Attacks in Federated Learning: A Survey(IEEE, 2022-04) Wang, Zhilin; Kang, Qiao; Zhang, Xinyi; Hu, Qin; Computer and Information Science, School of ScienceAdvances in distributed machine learning can empower future communications and networking. The emergence of federated learning (FL) has provided an efficient framework for distributed machine learning, which, however, still faces many security challenges. Among them, model poisoning attacks have a significant impact on the security and performance of FL. Given that there have been many studies focusing on defending against model poisoning attacks, it is necessary to survey the existing work and provide insights to inspire future research. In this paper, we first classify defense mechanisms for model poisoning attacks into two categories: evaluation methods for local model updates and aggregation methods for the global model. Then, we analyze some of the existing defense strategies in detail. We also discuss some potential challenges and future research directions. To the best of our knowledge, we are the first to survey defense methods for model poisoning attacks in FL.Item Incentive Mechanism Design for Joint Resource Allocation in Blockchain-Based Federated Learning(IEEE, 2023-05) Wang, Zhilin; Hu, Qin; Li, Ruinian; Xu, Minghui; Xiong, Zehui; Computer Science, Luddy School of Informatics, Computing, and EngineeringBlockchain-based federated learning (BCFL) has recently gained tremendous attention because of its advantages, such as decentralization and privacy protection of raw data. However, there has been few studies focusing on the allocation of resources for the participated devices (i.e., clients) in the BCFL system. Especially, in the BCFL framework where the FL clients are also the blockchain miners, clients have to train the local models, broadcast the trained model updates to the blockchain network, and then perform mining to generate new blocks. Since each client has a limited amount of computing resources, the problem of allocating computing resources to training and mining needs to be carefully addressed. In this paper, we design an incentive mechanism to help the model owner (MO) (i.e., the BCFL task publisher) assign each client appropriate rewards for training and mining, and then the client will determine the amount of computing power to allocate for each subtask based on these rewards using the two-stage Stackelberg game. After analyzing the utilities of the MO and clients, we transform the game model into two optimization problems, which are sequentially solved to derive the optimal strategies for both the MO and clients. Further, considering the fact that local training related information of each client may not be known by others, we extend the game model with analytical solutions to the incomplete information scenario. Extensive experimental results demonstrate the validity of our proposed schemes.Item Online-Learning-Based Fast-Convergent and Energy-Efficient Device Selection in Federated Edge Learning(IEEE, 2023-03) Peng, Cheng; Hu, Qin; Wang, Zhilin; Liu, Ryan Wen; Xiong, Zehui; Computer and Information Science, Purdue School of ScienceAs edge computing faces increasingly severe data security and privacy issues of edge devices, a framework called federated edge learning (FEL) has recently been proposed to enable machine learning (ML) model training at the edge, ensuring communication efficiency and data privacy protection for edge devices. In this paradigm, the training efficiency has long been challenged by the heterogeneity of communication conditions, computing capabilities, and available data sets at devices. Currently, researchers focus on solving this challenge via device selection from the perspective of optimizing energy consumption or convergence speed. However, the consideration of any one of them is insufficient to guarantee the long-term system efficiency and stability. To fill the gap, we propose an optimization problem to simultaneously minimize the total energy consumption of selected devices and maximize the convergence speed of the global model for device selection in FEL, under the constraints of training data amount and time consumption. For the accurate calculation of energy consumption, we deploy online bandit learning to estimate the CPU-cycle frequency availability of each device, based on an efficient algorithm, named fast-convergent energy-efficient device selection (FCE2DS), is proposed to solve the optimization problem with a low level of time complexity. Through a series of comparative experiments, we evaluate the performance of the proposed FCE2DS scheme, verifying its high training accuracy and energy efficiency.Item Transaction pricing mechanism design and assessment for blockchain(Elsevier, 2022-03) Wang, Zhilin; Hu, Qin; Wang, Yawei; Xiao, Yinhao; Computer and Information Science, School of ScienceThe importance of transaction fees in maintaining blockchain security and sustainability has been confirmed by extensive research, although they are not mandatory in most current blockchain systems. To enhance blockchain in the long term, it is crucial to design effective transaction pricing mechanisms. Different from the existing schemes based on auctions with more consideration about the profit of miners, we resort to game theory and propose a correlated equilibrium based transaction pricing mechanism through solving a pricing game among users with transactions, which can achieve both the individual and global optimum. To avoid the computational complexity exponentially increasing with the number of transactions, we further improve the game-theoretic solution with an approximate algorithm, which can derive almost the same results as the original one but costs significantly reduced time. We also propose a truthful assessment model for pricing mechanism to collect the feedback of users regarding the price suggestion. Extensive experimental results demonstrate the effectiveness and efficiency of our proposed mechanism.