- Browse by Author
Browsing by Author "Wang, Meijing"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure(Oxford University Press, 2021) Ellis, Bradley W.; Traktuev, Dmitry O.; Merfeld-Clauss, Stephanie; Can, U. Isik; Wang, Meijing; Bergeron, Ray; Zorlutuna, Pinar; March, Keith L.; Surgery, School of MedicineHeart transplantation is a life-saving therapy for end-stage organ failure. Organ deterioration during transportation limits storage to 4 hours, limiting hearts available. Approaches ameliorating organ damage could increase the number of hearts acceptable for transplantation. Prior studies show that adipose-derived stem/stromal cell secretome (ASC-S) rescues tissues from postischemic damage in vivo. This study tested whether ASC-S preserved the function of mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes (iCM) exposed to organ transportation and transplantation conditions. Hearts were subjected to cold University of Wisconsin (UW) cardioplegic solution ± ASC-S for 6 hours followed by analysis using the Langendorff technique. In parallel, the effects of ASC-S on the recovery of iCM from UW solution were examined when provided either during or after cold cardioplegia. Exposure of hearts and iCM to UW deteriorated contractile activity and caused cell apoptosis, worsening in iCM as a function of exposure time; these were ameliorated by augmenting with ASC-S. Silencing of superoxide dismutase 3 and catalase expression prior to secretome generation compromised the ASC-S cardiomyocyte-protective effects. In this study, a novel in vitro iCM model was developed to complement a rodent heart model in assessing efficacy of approaches to improve cardiac preservation. ASC-S displays strong cardioprotective activity on iCM either with or following cold cardioplegia. This effect is associated with ASC-S-mediated cellular clearance of reactive oxygen species. The effect of ASC-S on the temporal recovery of iCM function supports the possibility of lengthening heart storage by augmenting cardioplegic transport solution with ASC-S, expanding the pool of hearts for transplantation.Item Bone marrow- or adipose-mesenchymal stromal cell secretome preserves myocardial transcriptome profile and ameliorates cardiac damage following ex vivo cold storage(Elsevier, 2022) Scott, Susan R.; March, Keith L.; Wang, I-Wen; Singh, Kanhaiya; Liu, Jianyun; Turrentin, Mark; Sen, Chandan K.; Wang, Meijing; Surgery, School of MedicineBackground: Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage. Methods and results: Isolated mouse hearts were divided into: no cold storage (control), 6 h cold storage (6 h-I), 6 h-I + conditioned media from bone marrow MSCs (BM-MSC CM), and 6 h-I + adipose-MSC CM (Ad-MSC CM). Deep RNA sequencing analysis revealed that compared to control, 6 h-I led to 266 differentially expressed genes, many of which were implicated in modulating mitochondrial performance, oxidative stress response, myocardial function, and apoptosis. BM-MSC CM and Ad-MSC CM restored these gene expression towards control. They also improved 6 h-I-induced myocardial functional depression, reduced inflammatory cytokine production, decreased apoptosis, and reduced myocardial H2O2. However, neither MSC-exosomes nor exosome-depleted CM recapitulated MSC CM-ameliorated apoptosis and CM-improved mitochondrial preservation during cold ischemia. Knockdown of Per2 by specific siRNA abolished MSC CM-mediated these protective effects in cardiomyocytes following 6 h cold storage. Conclusions: Our results demonstrated that using MSC secretome (BM-MSCs and Ad-MSCs) during prolonged cold storage confers preservation of the normal transcriptional "fingerprint", and reduces donor heart damage. MSC-released soluble factors and exosomes may synergistically act for donor heart protection.Item Caveolin and oxidative stress in cardiac pathology(Frontiers Media, 2025-02-18) Zadorozny, Lauren; Du, Jiayue; Supanekar, Neil; Annamalai, Karthik; Yu, Qing; Wang, Meijing; Surgery, School of MedicineCaveolins interact with signaling molecules within caveolae and subcellular membranes. Dysregulation of caveolin function and protein abundance contributes to cardiac pathophysiological processes, driving the development and progression of heart disease. Reactive oxygen species (ROS) play a critical role in maintaining cellular homeostasis and are key contributors to the pathophysiological mechanisms of cardiovascular disorders. Caveolins have been shown to modulate oxidative stress and regulate redox homeostasis. However, the specific roles of caveolins, particularly caveolin-1 and caveolin-3, in regulating ROS production during cardiac pathology remain unclear. This mini-review article highlights the correlation between caveolins and oxidative stress in maintaining cardiovascular health and modulating cardiac diseases, specifically in myocardial ischemia, heart failure, diabetes-induced metabolic cardiomyopathy, and septic cardiomyopathy. A deeper understanding of caveolin-mediated mechanisms may pave the way for innovative therapeutic approaches to treat cardiovascular diseases.Item Chronic Treatment with Multi-Kinase Inhibitors Causes Differential Toxicities on Skeletal and Cardiac Muscles(MDPI, 2019-04-23) Huot, Joshua R.; Essex, Alyson L.; Gutierrez, Maya; Barreto, Rafael; Wang, Meijing; Waning, David L.; Plotkin, Lilian I.; Bonetto, Andrea; Surgery, School of MedicineDespite recent progress, chemotherapy remains the preferred treatment for cancer. We have shown a link between anticancer drugs and the development of cachexia, i.e., body wasting accompanied by muscle loss. The multi-kinase inhibitors (MKIs) regorafenib and sorafenib, used as second-line treatment for solid tumors, are frequently accompanied by several side effects, including loss of muscle mass and strength. In the present study we aimed to investigate the molecular mechanisms associated with the occurrence of muscle toxicities in in vivo conditions. Hence, we treated 8-week old healthy CD2F1 male mice with MKIs for up to six weeks and observed decreased skeletal and cardiac muscle mass, consistent with muscle weakness. Modulation of ERK1/2 and GSK3β, as well as increased expression of markers of autophagy, previously associated with muscle atrophy conditions, were shown in skeletal muscle upon treatment with either drug. MKIs also promoted cardiac abnormalities consistent with reduced left ventricular mass, internal diameter, posterior wall thickness and stroke volume, despite unchanged overall function. Notably, different signaling pathways were affected in the heart, including reduced expression of mitochondrial proteins, and elevated AKT, GSK3β, mTOR, MEK1/2 and ERK1/2 phosphorylation. Combined, our data demonstrate detrimental effects on skeletal and cardiac muscle in association with chronic administration of MKIs, although different mechanisms would seem to contribute to the cachectic phenotype in the two tissues.Item Critical Roles of STAT3 in β-Adrenergic Functions in the Heart(American Heart Association, 2016-01-05) Zhang, Wenjun; Qu, Xiuxia; Chen, Biyi; Snyder, Marylynn; Wang, Meijing; Li, Baiyan; Tang, Yue; Chen, Hanying; Zhu, Wuqiang; Zhan, Li; Yin, Ni; Li, Deqiang; Li, Xie; Liu, Ying; Zhang, J. Jillian; Fu, Xin-Yuan; Rubart, Michael; Song, Long-Sheng; Huang, Xin-Yun; Shou, Weinian; Department of Pediatrics, IU School of MedicineBACKGROUND: β-Adrenergic receptors (βARs) play paradoxical roles in the heart. On one hand, βARs augment cardiac performance to fulfill the physiological demands, but on the other hand, prolonged activations of βARs exert deleterious effects that result in heart failure. The signal transducer and activator of transcription 3 (STAT3) plays a dynamic role in integrating multiple cytokine signaling pathways in a number of tissues. Altered activation of STAT3 has been observed in failing hearts in both human patients and animal models. Our objective is to determine the potential regulatory roles of STAT3 in cardiac βAR-mediated signaling and function. METHODS AND RESULTS: We observed that STAT3 can be directly activated in cardiomyocytes by β-adrenergic agonists. To follow up this finding, we analyzed βAR function in cardiomyocyte-restricted STAT3 knockouts and discovered that the conditional loss of STAT3 in cardiomyocytes markedly reduced the cardiac contractile response to acute βAR stimulation, and caused disengagement of calcium coupling and muscle contraction. Under chronic β-adrenergic stimulation, Stat3cKO hearts exhibited pronounced cardiomyocyte hypertrophy, cell death, and subsequent cardiac fibrosis. Biochemical and genetic data supported that Gαs and Src kinases are required for βAR-mediated activation of STAT3. Finally, we demonstrated that STAT3 transcriptionally regulates several key components of βAR pathway, including β1AR, protein kinase A, and T-type Ca(2+) channels. CONCLUSIONS: Our data demonstrate for the first time that STAT3 has a fundamental role in βAR signaling and functions in the heart. STAT3 serves as a critical transcriptional regulator for βAR-mediated cardiac stress adaption, pathological remodeling, and heart failure.Item Delayed Effects of Acute Radiation Exposure in a Murine Model of the H-ARS: Multiple-Organ Injury Consequent to <10 Gy Total Body Irradiation(Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2015-11) Unthank, Joseph L.; Miller, Steven J.; Quickery, Ariel K.; Ferguson, Ethan L.; Wang, Meijing; Sampson, Carol H.; Chua, Hui Lin; DiStasi, Matthew R.; Feng, Hailin; Fisher, Alexa; Katz, Barry P.; Plett, P. Artur; Sandusky, George E.; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P.; MacVittie, Thomas J.; Orschell, Christie M.; Department of Surgery, School of MedicineThe threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.Item Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia(Elsevier, 2009-04) Erwin, Graham S.; Crisostomo, Paul R.; Wang, Yue; Wang, Meijing; Markel, Troy A.; Guzman, Mike; Sando, Ian C.; Sharma, Rahul; Meldrum, Daniel R.; Surgery, School of MedicineBACKGROUND: Stem cell therapy is a promising treatment modality for injured cardiac tissue. A novel mechanism for this cardioprotection may include paracrine actions. Our lab has recently shown that gender differences exist in mesenchymal stem cell (MSC) paracrine function. Estrogen is implicated in the cardioprotection found in females. It remains unknown whether 17beta-estradiol (E2) affects MSC paracrine function and whether E2-treated MSCs may better protect injured cardiac tissue. We hypothesize that E2-exposed MSCs infused into hearts prior to ischemia may demonstrate increased vascular endothelial growth factor (VEGF) production and greater protection of myocardial function compared to untreated MSCs. MATERIALS AND METHODS: Untreated and E2-treated MSCs were isolated, cultured, and plated and supernatants were harvested for VEGF assay (enzyme-linked immunosorbent assay). Adult male Sprague-Dawley rat hearts (n = 13) were isolated and perfused via Langendorff model and subjected to 15 min equilibration, 25 min warm global ischemia, and 40 min reperfusion. Hearts were randomly assigned to perfusate vehicle, untreated male MSC, or E2-treated male MSC. Transcoronary delivery of 1 million MSCs was performed immediately prior to ischemia in experimental hearts. RESULTS: E2-treated MSCs provoked significantly more VEGF production than untreated MSCs (933.2 +/- 64.9 versus 595.8 +/- 10.7 pg/mL). Postischemic recovery of left ventricular developed pressure was significantly greater in hearts infused with E2-treated MSCs (66.9 +/- 3.3%) than untreated MSCs (48.7 +/- 3.7%) and vehicle (28.9 +/- 4.6%) at end reperfusion. There was also greater recovery of the end diastolic pressure with E2-treated MSCs than untreated MSCs and vehicle. CONCLUSIONS: Preischemic infusion of MSCs protects myocardial function and viability. E2-treated MSCs may enhance this paracrine protection, which suggests that ex vivo modification of MSCs may improve therapeutic outcome.Item Exogenous GDF11 Induces Cardiac and Skeletal Muscle Dysfunction and Wasting(Springer, 2017-07) Zimmers, Teresa A.; Jiang, Yanling; Wang, Meijing; Liang, Tiffany W.; Rupert, Joseph E.; Au, Ernie D.; Marino, Francesco E.; Couch, Marion E.; Koniaris, Leonidas G.; Surgery, School of MedicineGrowth differentiation factor 11 (GDF11), a TGF-beta superfamily member, is highly homologous to myostatin and essential for embryonic patterning and organogenesis. Reports of GDF11 effects on adult tissues are conflicting, with some describing anti-aging and pro-regenerative activities on the heart and skeletal muscle while others opposite or no effects. Herein, we sought to determine the in vivo cardiac and skeletal muscle effects of excess GDF11. Mice were injected with GDF11 secreting cells, an identical model to that used to initially identify the in vivo effects of myostatin. GDF11 exposure in mice induced whole body wasting and profound loss of function in cardiac and skeletal muscle over a 14-day period. Loss of cardiac mass preceded skeletal muscle loss. Cardiac histologic and echocardiographic evaluation demonstrated loss of ventricular muscle wall thickness, decreased cardiomyocyte size, and decreased cardiac function 10 days following initiation of GDF11 exposure. Changes in skeletal muscle after GDF11 exposure were manifest at day 13 and were associated with wasting, decreased fiber size, and reduced strength. Changes in cardiomyocytes and skeletal muscle fibers were associated with activation of SMAD2, the ubiquitin–proteasome pathway and autophagy. Thus, GDF11 over administration in vivo results in cardiac and skeletal muscle loss, dysfunction, and death. Here, serum levels of GDF11 by Western blotting were 1.5-fold increased over controls. Although GDF11 effects in vivo are likely dose, route, and duration dependent, its physiologic changes are similar to myostatin and other Activin receptors ligands. These data support that GDF11, like its other closely related TGF-beta family members, induces loss of cardiac and skeletal muscle mass and function.Item Exogenous Oncostatin M Induces Cardiac Dysfunction, Musculoskeletal Atrophy, and Fibrosis(Elsevier, 2022) Jengelley, Daenique H. A.; Wang, Meijing; Narasimhan, Ashok; Rupert, Joseph E.; Young, Andrew R.; Zhong, Xiaoling; Horan, Daniel J.; Robling, Alexander G.; Koniaris, Leonidas G.; Zimmers, Teresa A.; Biochemistry and Molecular Biology, School of MedicineMusculoskeletal diseases such as muscular dystrophy, cachexia, osteoarthritis, and rheumatoid arthritis impair overall physical health and reduce survival. Patients suffer from pain, dysfunction, and dysmobility due to inflammation and fibrosis in bones, muscles, and joints, both locally and systemically. The Interleukin-6 (IL-6) family of cytokines, most notably IL-6, is implicated in musculoskeletal disorders and cachexia. Here we show elevated circulating levels of OSM in murine pancreatic cancer cachexia and evaluate the effects of the IL-6 family member, Oncostatin M (OSM), on muscle and bone using adeno-associated virus (AAV) mediated over-expression of murine OSM in wildtype and IL-6 deficient mice. Initial studies with high titer AAV-OSM injection yielded high circulating OSM and IL-6, thrombocytosis, inflammation, and 60% mortality without muscle loss within 4 days. Subsequently, to mimic OSM levels in cachexia, a lower titer of AAV-OSM was used in wildtype and Il6 null mice, observing effects out to 4 weeks and 12 weeks. AAV-OSM caused muscle atrophy and fibrosis in the gastrocnemius, tibialis anterior, and quadriceps of the injected limb, but these effects were not observed on the non-injected side. In contrast, OSM induced both local and distant trabecular bone loss as shown by reduced bone volume, trabecular number, and thickness, and increased trabecular separation. OSM caused cardiac dysfunction including reduced ejection fraction and reduced fractional shortening. RNA-sequencing of cardiac muscle revealed upregulation of genes related to inflammation and fibrosis. None of these effects were different in IL-6 knockout mice. Thus, OSM induces local muscle atrophy, systemic bone loss, tissue fibrosis, and cardiac dysfunction independently of IL-6, suggesting a role for OSM in musculoskeletal conditions with these characteristics, including cancer cachexia.Item Gemcitabine plus nab-paclitaxel preserves skeletal and cardiac mass and function in a murine model of pancreatic cancer cachexia(bioRxiv, 2023-04-18) Narasimhan, Ashok; Jengelley, Daenique H. A.; Huot, Joshua R.; Umberger, Tara S.; Doud, Emma H.; Mosley, Amber L.; Wang, Meijing; Zhong, Xiaoling; Counts, Brittany R.; Rupert, Joseph E.; Young, Andrew R.; Bonetto, Andrea; Horan, Daniel J.; Robling, Alexander G.; Fishel, Melissa L.; Kelley, Mark R.; Koniaris, Leonidas G.; Zimmers, Teresa A.; Surgery, School of MedicineMore than 85% of patients with pancreatic ductal adenocarcinoma (PDAC) suffer from cachexia, a debilitating syndrome characterized by the loss of muscle and fat and remains an unmet medical need. While chemotherapy remains an effective treatment option, it can also induce weight and muscle loss in patients with cancer. Gemcitabine combined with nab paclitaxel (GnP) is a first line treatment option for patients with PDAC but GnP’s effect on cachexia has not been comprehensively investigated. We interrogated the effects of GnP in a murine model of pancreatic cancer cachexia. Mice were orthotopically implanted with the cachexia inducing pancreatic cell line (KPC) and were administered GnP or vehicle. The controls underwent sham surgery. We defined GnP effects on cachexia and tumor burden by evaluating muscle and cardiac mass and function, fat mass, bone morphometry, and hematology measurements. We completed RNA sequencing and deep proteome profiling in skeletal and cardiac muscle. KPC+GnP reduced tumor burden over 50% and increased survival compared to KPC. KPC vehicle group had more than 15% muscle mass loss and decreased left ventricular mass, this was not present in KPC+GnP when compared to controls. RNA Seq and deep proteomics analyses suggested that muscle and cardiac dysfunction pathways activated in KPC group were either reversed or decreased in KPC+GnP. In all, our data suggests that GnP protects against muscle and cardiac wasting in an experimental model of PDAC cachexia.