- Browse by Author
Browsing by Author "Wagner, Erin K."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Associations between menarche-related genetic variants and pubertal growth in male and female adolescents(Elsevier, 2015-01) Tu, Wanzhu; Wagner, Erin K.; Eckert, George J.; Yu, Zhangsheng; Hannon, Tamara; Pratt, J. Howard; He, Chunyan; Department of Epidemiology, School of Public HealthPURPOSE: Previous studies have identified novel genetic variants associated with age at menarche in females of European descent. The pubertal growth effects of these variants have not been carefully evaluated in non-European descent groups. We aimed to examine the effects of 31 newly identified menarche-related single-nucleotide polymorphisms (SNPs) on growth outcomes in African-American (AA) and European-American (EA) children in a prospective cohort. METHODS: We analyzed longitudinal data collected from 263 AAs and 338 EAs enrolled between ages 5 and 17 years; the subjects were followed semiannually for an average of 6 years. The associations between the SNPs and growth-related outcomes, including weight, height, and body mass index (BMI), were examined using mixed-effect models. RESULTS: Longitudinal analyses revealed that 4 (near or in genes VGLL3, PEX2, CA10, and SKOR2) of the 14 menarche-only-related SNPs were associated with changes in weight and BMI in EA and AA (p ≤ .0032), but none of them was associated with changes in height. Of the eight menarche-timing and BMI-related SNPs, none was associated with changes in height, but three (in or near genes NEGR1, ETV5, and FTO) were associated with more rapid increases in weight and/or BMI in EA (p ≤ .0059). Among the nine menarche-timing and height-related SNPs, four (in or near genes ZBTB38, LOC728666, TBX2, and CABLES) were associated with changes in weight or height in EA and AA (p ≤ .0042). CONCLUSIONS: Genetic variants related to age at menarche were found to be associated with various growth parameters in healthy adolescents. The identified associations were often race and sex specific.Item Long intergenic non-coding RNA expression signature in human breast cancer(SpringerNature, 2016-11-29) Zhang, Yanfeng; Wagner, Erin K.; Guo, Xingyi; May, Isaac; Cai, Qiuyin; Zheng, Wei; He, Chunyan; Long, Jirong; Department of Epidemiology, Richard M. Fairbanks School of Public HealthBreast cancer is a complex disease, characterized by gene deregulation. There is less systematic investigation of the capacity of long intergenic non-coding RNAs (lincRNAs) as biomarkers associated with breast cancer pathogenesis or several clinicopathological variables including receptor status and patient survival. We designed a two-stage study, including 1,000 breast tumor RNA-seq data from The Cancer Genome Atlas (TCGA) as the discovery stage, and RNA-seq data of matched tumor and adjacent normal tissue from 50 breast cancer patients as well as 23 normal breast tissue from healthy women as the replication stage. We identified 83 lincRNAs showing the significant expression changes in breast tumors with a false discovery rate (FDR) < 1% in the discovery dataset. Thirty-seven out of the 83 were validated in the replication dataset. Integrative genomic analyses suggested that the aberrant expression of these 37 lincRNAs was probably related with the expression alteration of several transcription factors (TFs). We observed a differential co-expression pattern between lincRNAs and their neighboring genes. We found that the expression levels of one lincRNA (RP5-1198O20 with Ensembl ID ENSG00000230615) were associated with breast cancer survival with P < 0.05. Our study identifies a set of aberrantly expressed lincRNAs in breast cancer.Item Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche(Nature Publishing Group, 2014-10-02) Perry, John RB; Day, Felix; Elks, Cathy E.; Sulem, Patrick; Thompson, Deborah J.; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I.; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q.; Corre, Tanguy; Cousminer, Diana L.; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D.; Kjellqvist, Sanela; Lunetta, Kathryn L.; McMahon, George; Nolte, Ilja M.; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V.; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K.; Amin, Najaf; Bierut, Laura J.; Byrne, Enda M.; Hottenga, Jouke-Jan; Koller, Daniel L.; Mangino, Massimo; Pers, Tune H.; Yerges-Armstrong, Laura M.; Zhao, Jing Hua; Andrulis, Irene L.; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W.; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E.; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J. Margriet; Couch, Fergus J.; Couper, David; Coveillo, Andrea D.; Cox, Angela; Czene, Kamila; D’adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W.; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K.; Dunning, Alison M.; Eiriksdottir, Gudny; Eriksson, Johan G.; Fasching, Peter A.; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E.; García-Closas, Montserrat; Geller, Frank; de Geus, Eco EJ; Giles, Graham G.; Gudbjartsson, Daniel F.; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A.; Heath, Andrew C.; Hofman, Albert; Hooning, Maartje J.; Hopper, John L.; Hu, Frank B.; Hunter, David J.; Karasik, David; Kiel, Douglas P.; Knight, Julia A.; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K.; Mannermaa, Arto; Martin, Nicholas G.; Masson, Gisli; McArdle, Patrick F.; McArdle, Wendy L.; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L.; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A.; Oldehinkel, Albertine J.; Oostra, Ben A.; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L.; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul DP; Postma, Dirkje S.; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M.; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K.; Southey, Mellissa C.; Sovio, Ulla; Stampfer, Meir J.; Stöckl, Doris; Storniolo, Anna M.; Timpson, Nicholas J.; Tyrer, Jonathan; Visser, Jenny A.; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce HR; Wright, Margaret J.; Boomsma, Dorret I.; Econs, Michael J.; Khaw, Kay-Tee; Loos, Ruth JF; McCarthy, Mark I.; Montgomery, Grant W.; Rice, John P.; Streeten, Elizabeth A.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Alizadeh, Behrooz Z.; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A.; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B.; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E.; Ridker, Paul M.; Snieder, Harold; Sørensen, Thorkild IA; Spector, Tim D.; Strachan, David P.; Uitterlinden, André G.; Wareham, Nicholas J.; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F.; Stefansson, Kari; Murabito, Joanne M.; Ong, Ken K.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthAge at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation,, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P<5×10−8) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) demonstrating parent-of-origin specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signaling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.Item Tissue-specific Co-expression of Long Non-coding and Coding RNAs Associated with Breast Cancer(SpringerNature, 2016-09-06) Wu, Wenting; Wagner, Erin K.; Hao, Yangyang; Rao, Xi; Dai, Hongji; Han, Jiali; Chen, Jinhui; Storniolo, Anna Maria V.; Liu, Yunlong; He, Chunyan; Department of Epidemiology, Richard M. Fairbanks School of Public HealthInference of the biological roles of lncRNAs in breast cancer development remains a challenge. Here, we analyzed RNA-seq data in tumor and normal breast tissue samples from 18 breast cancer patients and 18 healthy controls and constructed a functional lncRNA-mRNA co-expression network. We revealed two distinctive co-expression patterns associated with breast cancer, reflecting different underlying regulatory mechanisms: (1) 516 pairs of lncRNA-mRNAs have differential co-expression pattern, in which the correlation between lncRNA and mRNA expression differs in tumor and normal breast tissue; (2) 291 pairs have dose-response co-expression pattern, in which the correlation is similar, but the expression level of lncRNA or mRNA differs in the two tissue types. We further validated our findings in TCGA dataset and annotated lncRNAs using TANRIC. One novel lncRNA, AC145110.1 on 8p12, was found differentially co-expressed with 127 mRNAs (including TOX4 and MAEL) in tumor and normal breast tissue and also highly correlated with breast cancer clinical outcomes. Functional enrichment and pathway analyses identified distinct biological functions for different patterns of co-expression regulations. Our data suggested that lncRNAs might be involved in breast tumorigenesis through the modulation of gene expression in multiple pathologic pathways.