- Browse by Author
Browsing by Author "Visscher, Daniel W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assessment of folate receptor-β expression in human neoplastic tissues(Impact Journals, LLC, 2015-06-10) Shen, Jiayin; Putt, Karson S.; Visscher, Daniel W.; Murphy, Linda; Cohen, Cynthia; Singhal, Sunil; Sandusky, George; Feng, Yang; Dimitrov, Dimiter S.; Low, Philip S.; Department of Pathology & Laboratory Medicine, IU School of MedicineOver-expression of folate receptor alpha on cancer cells has been frequently exploited for delivery of folate-targeted imaging and therapeutic agents to tumors. Because limited information exists on expression of the beta isoform of the folate receptor in human cancers (FR-β), we have evaluated the immunohistochemical staining pattern of FR-β in 992 tumor sections from 20 different human cancer types using a new anti-human FR-β monoclonal antibody. FR-β expression was shown to be more pronounced in cells within the stroma, primarily macrophages and macrophage-like cells than cancer cells in every cancer type studied. Moreover, FR-β expression in both cancer and stromal cells was found to be statistically more prominent in females than males. A significant positive correlation was also observed between FR-β expression on stromal cells and both the stage of the cancer and the presence of lymph node metastases. Based on these data we conclude FR-β may constitute a good target for specific delivery of therapeutic agents to activated macrophages and that accumulation of FR-β positive macrophages in the stroma could serve as a useful indicator of a tumor's metastatic potential.Item Signals from the Metastatic Niche Regulate Early and Advanced Ovarian Cancer Metastasis through miR-4454 Downregulation(AACR, 2020-08) Dasari, Subramanyam; Pandhiri, Taruni; Grassi, Tommaso; Visscher, Daniel W.; Multinu, Francesco; Agarwal, Komal; Mariani, Andrea; Shridhar, Viji; Mitra, Anirban K.; Medical and Molecular Genetics, School of MedicineTreatment of ovarian cancer is limited by extensive metastasis and yet it remains poorly understood. We have studied the critical step of metastatic colonization in the context of the productive interactions with the metastatic microenvironment with a goal of identifying key regulators. By combining miRNA expression analysis using an organotypic 3D culture model of early ovarian cancer metastasis with that of matched primary and metastatic tumors from 42 patients with ovarian cancer, we identified miR-4454 as a key regulator of both early colonization and advanced metastasis in patients with ovarian cancer. miR-4454 was downregulated in the metastasizing ovarian cancer cells through paracrine signals from microenvironmental fibroblasts, which promoted migration, invasion, proliferation, and clonogenic growth in ovarian cancer cells as well as their ability to penetrate through the outer layers of the omentum. Stable overexpression of miR-4454 decreased metastasis in ovarian cancer xenografts. Its mechanism of action was through the upregulation of its targets, secreted protein acidic and cysteine rich (SPARC) and BCL2 associated athanogene 5 (BAG5), which activated focal adhesion kinase (FAK) signaling, promoted mutant p53 gain of function by its stabilization, and inhibited apoptosis. Because microenvironment-induced downregulation of miR-4454 is essential for early and advanced metastasis, targeting it could be a promising therapeutic approach.