- Browse by Author
Browsing by Author "Varathan, Pradeep"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Deep trans-omic network fusion reveals altered synaptic network in Alzheimer’s Disease(CSH, 2023-02-21) Xie, Linhui; Raj, Yash; Varathan, Pradeep; He, Bing; Nho, Kwangsik; Risacher, Shannon L.; Salama, Paul; Saykin, Andrew J.; Yan, Jingwen; Electrical and Computer Engineering, School of Engineering and TechnologyMulti-omic data spanning from genotype, gene expression to protein expression have been increasingly explored to interpret findings from genome wide association studies of Alzheimer’s disease (AD) and to gain more insight of the disease mechanism. However, each -omics data type is usually examined individually and the functional interactions between genetic variations, genes and proteins are only used after discovery to interpret the findings, but not beforehand. In this case, multi-omic findings are likely not functionally related and therefore give rise to challenges in interpretation. To address this problem, we propose a new interpretable deep neural network model MoFNet to jointly model the prior knowledge of functional interactions and multi-omic data set. It aims to identify a subnetwork of functional interactions predictive of AD evidenced by multi-omic measures. Particularly, prior functional interaction network was embedded into the architecture of MoFNet in a way that it resembles the information flow from DNA to gene and protein. The proposed model MoFNet significantly outperformed all other state-of-art classifiers when evaluated using multi-omic data from the ROS/MAP cohort. Instead of individual markers, MoFNet yielded multi-omic sub-networks related to innate immune system, clearance of misfolded proteins, and neurotransmitter release respectively. Around 50% of these findings were replicated in another independent cohort. Our identified gene/proteins are highly related to synaptic vesicle function. Altered regulation or expression of these genes/proteins could cause disruption in neuron-neuron or neuron-glia cross talk and further lead to neuronal and synapse loss in AD. Further investigation of these identified genes/proteins could possibly help decipher the mechanisms underlying synaptic dysfunction in AD, and ultimately inform therapeutic strategies to modify AD progression in the early stage.Item Fused multi-modal similarity network as prior in guiding brain imaging genetic association(Frontiers Media, 2023-05-05) He, Bing; Xie, Linhui; Varathan, Pradeep; Nho, Kwangsik; Risacher, Shannon L.; Saykin, Andrew J.; Yan, Jingwen; Alzheimer’s Disease Neuroimaging Initiative; Engineering Technology, School of Engineering and TechnologyIntroduction: Brain imaging genetics aims to explore the genetic architecture underlying brain structure and functions. Recent studies showed that the incorporation of prior knowledge, such as subject diagnosis information and brain regional correlation, can help identify significantly stronger imaging genetic associations. However, sometimes such information may be incomplete or even unavailable. Methods: In this study, we explore a new data-driven prior knowledge that captures the subject-level similarity by fusing multi-modal similarity networks. It was incorporated into the sparse canonical correlation analysis (SCCA) model, which is aimed to identify a small set of brain imaging and genetic markers that explain the similarity matrix supported by both modalities. It was applied to amyloid and tau imaging data of the ADNI cohort, respectively. Results: Fused similarity matrix across imaging and genetic data was found to improve the association performance better or similarly well as diagnosis information, and therefore would be a potential substitute prior when the diagnosis information is not available (i.e., studies focused on healthy controls). Discussion: Our result confirmed the value of all types of prior knowledge in improving association identification. In addition, the fused network representing the subject relationship supported by multi-modal data showed consistently the best or equally best performance compared to the diagnosis network and the co-expression network.Item Identification of functionally connected multi-omic biomarkers for Alzheimer’s disease using modularity-constrained Lasso(PLOS, 2020-06-17) Xie, Linhui; Varathan, Pradeep; Nho, Kwangsik; Saykin, Andrew J.; Salama, Paul; Yan, Jingwen; Radiology and Imaging Sciences, School of MedicineLarge-scale genome wide association studies (GWASs) have led to discovery of many genetic risk factors in Alzheimer’s disease (AD), such as APOE, TOMM40 and CLU. Despite the significant progress, it remains a major challenge to functionally validate these genetic findings and translate them into targetable mechanisms. Integration of multiple types of molecular data is increasingly used to address this problem. In this paper, we proposed a modularity-constrained Lasso model to jointly analyze the genotype, gene expression and protein expression data for discovery of functionally connected multi-omic biomarkers in AD. With a prior network capturing the functional relationship between SNPs, genes and proteins, the newly introduced penalty term maximizes the global modularity of the subnetwork involving selected markers and encourages the selection of multi-omic markers with dense functional connectivity, instead of individual markers. We applied this new model to the real data collected in the ROS/MAP cohort where the cognitive performance was used as disease quantitative trait. A functionally connected subnetwork involving 276 multi-omic biomarkers, including SNPs, genes and proteins, were identified to bear predictive power. Within this subnetwork, multiple trans-omic paths from SNPs to genes and then proteins were observed. This suggests that cognitive performance deterioration in AD patients can be potentially a result of genetic variations due to their cascade effect on the downstream transcriptome and proteome level.Item Integrative analysis of eQTL and GWAS summary statistics reveals transcriptomic alteration in Alzheimer brains(BMC, 2022-04-23) Varathan, Pradeep; Gorijala, Priyanka; Jacobson, Tanner; Chasioti, Danai; Nho, Kwangsik; Risacher, Shannon L.; Saykin, Andrew J.; Yan, Jingwen; Radiology and Imaging Sciences, School of MedicineBackground: Large-scale genome-wide association studies have successfully identified many genetic variants significantly associated with Alzheimer's disease (AD), such as rs429358, rs11038106, rs723804, rs13591776, and more. The next key step is to understand the function of these SNPs and the downstream biology through which they exert the effect on the development of AD. However, this remains a challenging task due to the tissue-specific nature of transcriptomic and proteomic data and the limited availability of brain tissue.In this paper, instead of using coupled transcriptomic data, we performed an integrative analysis of existing GWAS findings and expression quantitative trait loci (eQTL) results from AD-related brain regions to estimate the transcriptomic alterations in AD brain. Results: We used summary-based mendelian randomization method along with heterogeneity in dependent instruments method and were able to identify 32 genes with potential altered levels in temporal cortex region. Among these, 10 of them were further validated using real gene expression data collected from temporal cortex region, and 19 SNPs from NECTIN and TOMM40 genes were found associated with multiple temporal cortex imaging phenotype. Conclusion: Significant pathways from enriched gene networks included neutrophil degranulation, Cell surface interactions at the vascular wall, and Regulation of TP53 activity which are still relatively under explored in Alzheimer's Disease while also encouraging a necessity to bind further trans-eQTL effects into this integrative analysis.Item Integrative-omics for discovery of network-level disease biomarkers: a case study in Alzheimer's disease(Oxford University Press, 2021) Xie, Linhui; He, Bing; Varathan, Pradeep; Nho, Kwangsik; Risacher, Shannon L.; Saykin, Andrew J.; Salama, Paul; Yan, Jingwen; BioHealth Informatics, School of Informatics and ComputingA large number of genetic variations have been identified to be associated with Alzheimer's disease (AD) and related quantitative traits. However, majority of existing studies focused on single types of omics data, lacking the power of generating a community including multi-omic markers and their functional connections. Because of this, the immense value of multi-omics data on AD has attracted much attention. Leveraging genomic, transcriptomic and proteomic data, and their backbone network through functional relations, we proposed a modularity-constrained logistic regression model to mine the association between disease status and a group of functionally connected multi-omic features, i.e. single-nucleotide polymorphisms (SNPs), genes and proteins. This new model was applied to the real data collected from the frontal cortex tissue in the Religious Orders Study and Memory and Aging Project cohort. Compared with other state-of-art methods, it provided overall the best prediction performance during cross-validation. This new method helped identify a group of densely connected SNPs, genes and proteins predictive of AD status. These SNPs are mostly expression quantitative trait loci in the frontal region. Brain-wide gene expression profile of these genes and proteins were highly correlated with the brain activation map of 'vision', a brain function partly controlled by frontal cortex. These genes and proteins were also found to be associated with the amyloid deposition, cortical volume and average thickness of frontal regions. Taken together, these results suggested a potential pathway underlying the development of AD from SNPs to gene expression, protein expression and ultimately brain functional and structural changes.