ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Vance, Jeffery M."

Now showing 1 - 10 of 13
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer's Disease in African Ancestry
    (Public Library of Science, 2022-07-05) Rajabli, Farid; Beecham, Gary W.; Hendrie, Hugh C.; Baiyewu, Olusegun; Ogunniyi, Adesola; Gao, Sujuan; Kushch, Nicholas A.; Lipkin-Vasquez, Marina; Hamilton-Nelson, Kara L.; Young, Juan I.; Dykxhoorn, Derek M.; Nuytemans, Karen; Kunkle, Brian W.; Wang, Liyong; Jin, Fulai; Liu, Xiaoxiao; Feliciano-Astacio, Briseida E.; Alzheimer’s Disease Sequencing Project; Alzheimer’s Disease Genetic Consortium; Schellenberg, Gerard D.; Dalgard, Clifton L.; Griswold, Anthony J.; Byrd, Goldie S.; Reitz, Christiane; Cuccaro, Michael L.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Psychiatry, School of Medicine
    African descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (β = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (β = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (β = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (β = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.
  • Loading...
    Thumbnail Image
    Item
    A multiethnic transcriptome for Alzheimer Disease identifies cross‐ancestry and ancestry‐specific expression profiles
    (Wiley, 2025-01-03) Yang, Zikun; Cieza, Basilio; Reyes-Dumeyer, Dolly; Lee, Annie J.; Dugger, Brittany N.; Jin, Lee-Way; Murray, Melissa E.; Dickson, Dennis W.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Foroud, Tatiana M.; Teich, Andrew F.; Mayeux, Richard; Tosto, Giuseppe; Neurology, School of Medicine
    Background: Alzheimer’s Disease (AD) presents complex molecular heterogeneity, influenced by a variety of factors including heterogeneous phenotypic, genetic, and neuropathologic presentations. Regulation of gene expression mechanisms is a primary interest of investigations aiming to uncover the underlying disease mechanisms and progression. Method: We generated bulk RNA‐sequencing in prefrontal cortex from 565 AD brain samples (non‐Hispanic Whites, n = 399; Hispanics, n = 113; African American, n = 12) across six U.S. brain banks, and conducted differential gene expression and enrichment analyses. We sought to identify cross‐ancestry and ancestry‐specific differentially expressed genes (DEG) and pathways across Braak stages, adjusting for sex, age at death, and RNA quality metrics. We validated our findings using the Religious Orders Study/Memory and Aging Project study (ROS/MAP, n = 1,095). Lastly, we validated top DEG using publically‐available human single‐nucleus RNA sequencing (snRNAseq) data. Result: AD‐known genes VGF (LFC = ‐0.661, padj = 3.78) and ADAMTS2 (padj = 1.21) were consistently differentially expressed across statistical models, ethnic groups, and replicated in ROS/MAP (Figure 1). Genes from the heat shock protein (HSP) family, e.g. HSPB7 (padj = 3.78), were the top DEG, also replicated in ROS/MAP. Ethnic‐stratified analyses prioritized TNFSF14 and SPOCD1 as top DEG in Hispanic samples. Gene set enrichment analysis highlighted several significantly pathways, including “TYROBP causal network in microglia” (WP3945; padj = 1.68) and “Alzheimer Disease” (WP5124; padj = 4.24). snRNAseq validated several DEG, including VGF downregulated in neurons (padj = 1.1). Conclusion: To our knowledge, this is the largest diverse transcriptome study for AD in post‐mortem tissue. We identified perturbated genes and pathways resulting in cross‐ethnic and ethnic‐specific findings, ultimately highlighting the importance of diversity in AD investigations.
  • Loading...
    Thumbnail Image
    Item
    Absence of C9ORF72 expanded or intermediate repeats in autopsy-confirmed Parkinson's disease
    (Wiley, 2014-05) Nuytemans, Karen; Inchausti, Vanessa; Beecham, Gary W.; Wang, Liyong; Dickson, Dennis W.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Mash, Deborah C.; Frosch, Matthew P.; Foroud, Tatiana M.; Honig, Lawrence S.; Montine, Thomas J.; Dawson, Ted M.; Martin, Eden R.; Scott, William K.; Vance, Jeffery M.; Medical & Molecular Genetics, School of Medicine
    BACKGROUND: We have reported that intermediate repeat lengths of the C9ORF72 repeat are a risk factor for Parkinson's disease (PD) in a clinically diagnosed data set. Because 10% to 25% of clinically diagnosed PD have different diagnoses upon autopsy, we hypothesized that this may reflect phenotypic heterogeneity or concomitant pathology of other neurodegenerative disorders. METHODS: We screened 488 autopsy-confirmed PD cases for expansion haplotype tag rs3849942T. In 196 identified haplotype carriers, the C9ORF72 repeat was genotyped using the repeat-primed polymerase chain reaction assay. RESULTS: No larger (intermediate or expanded) repeats were found in these autopsy-confirmed PD samples. This absence of larger repeats is significantly different from the frequency in clinically diagnosed datasets (P = 0.002). CONCLUSIONS: Our results suggest that expanded or intermediate C9ORF72 repeats in clinically diagnosed PD or parkinsonism might be an indication of heterogeneity in clinically diagnosed PD cases. Further studies are needed to elucidate the potential contribution of the C9ORF72 repeat to autopsy-confirmed PD.
  • Loading...
    Thumbnail Image
    Item
    Cerebral amyloid angiopathy impacts neurofibrillary tangle burden and cognition
    (Oxford University Press, 2024-11-22) Godrich, Dana; Pasteris, Jeremy; Martin, Eden R.; Rundek, Tatjana; Schellenberg, Gerard; Foroud, Tatiana; Vance, Jeffery M.; Pericak-Vance, Margaret A.; Cuccaro, Michael L.; Scott, William K.; Kukull, Walter; Montine, Thomas J.; Beecham, Gary W.; Medical and Molecular Genetics, School of Medicine
    Cerebral amyloid angiopathy commonly co-occurs with amyloid β plaques and neurofibrillary degeneration and is proposed to contribute to cognitive impairment. However, the interplay among these pathologic changes of Alzheimer disease is not well understood. Here we replicate and extend findings of a recent study that suggested the association of cerebral amyloid angiopathy and cognitive impairment is mediated by neurofibrillary degeneration. We employed similar approaches but in a larger, clinical-based (as opposed to community-based) set of 4915 autopsied National Alzheimer's Coordinating Center participants (60% with dementia). Neuropathologic lesions were measured ordinally; longitudinal change in cognition was used to measure cognitive impairment. Statistical analyses included ordinal logistic regression, mediation analyses and extension of models to include presence of APOE e4. We show a statistical interaction between cerebral amyloid angiopathy and neuritic plaques that impacts the burden of neurofibrillary tangles. Mediation analyses show that cerebral amyloid angiopathy is associated with cognitive impairment, but only by modifying the impact of neurofibrillary tangles on cognition. We expanded the mediation analysis to include APOE e4 and show similar results. Findings indicate that cerebral amyloid angiopathy plays an important role in the burden and impact of neurofibrillary degeneration contributing to cognitive impairment.
  • Loading...
    Thumbnail Image
    Item
    Extended genome-wide association study employing the African genome resources panel identifies novel susceptibility loci for Alzheimer's disease in individuals of African ancestry
    (Wiley, 2024) Ray, Nicholas R.; Kunkle, Brian W.; Hamilton-Nelson, Kara; Kurup, Jiji T.; Rajabli, Farid; Qiao, Min; Vardarajan, Badri N.; Cosacak, Mehmet I.; Kizil, Caghan; Jean-Francois, Melissa; Cuccaro, Michael; Reyes-Dumeyer, Dolly; Cantwell, Laura; Kuzma, Amanda; Vance, Jeffery M.; Gao, Sujuan; Hendrie, Hugh C.; Baiyewu, Olusegun; Ogunniyi, Adesola; Akinyemi, Rufus O.; Alzheimer’s Disease Genetics Consortium; Lee, Wan-Ping; Martin, Eden R.; Wang, Li-San; Beecham, Gary W.; Bush, William S.; Xu, Wanying; Jin, Fulai; Wang, Liyong; Farrer, Lindsay A.; Haines, Jonathan L.; Byrd, Goldie S.; Schellenberg, Gerard D.; Mayeux, Richard; Pericak-Vance, Margaret A.; Reitz, Christiane; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Introduction: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. Methods: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. Results: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. Discussion: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. Highlights: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.
  • Loading...
    Thumbnail Image
    Item
    Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease
    (American Association for the Advancement of Science, 2018-01-10) Hui, Ken Y.; Fernandez-Hernandez, Heriberto; Hu, Jianzhong; Schaffner, Adam; Pankratz, Nathan; Hsu, Nai-Yun; Chuang, Ling-Shiang; Carmi, Shai; Villaverde, Nicole; Li, Xianting; Rivas, Manual; Levine, Adam P.; Bao, Xiuliang; Labrias, Philippe R.; Haritunians, Talin; Ruane, Darren; Gettler, Kyle; Chen, Ernie; Li, Dalin; Schiff, Elena R.; Pontikos, Nikolas; Barzilai, Nir; Brant, Steven R.; Bressman, Susan; Cheifetz, Adam S.; Clark, Lorraine N.; Daly, Mark J.; Desnick, Robert J.; Duerr, Richard H.; Katz, Seymour; Lencz, Todd; Myers, Richard H.; Ostrer, Harry; Ozelius, Laurie; Payami, Haydeh; Peter, Yakov; Rioux, John D.; Segal, Anthony W.; Scott, William K.; Silverberg, Mark S.; Vance, Jeffery M.; Ubarretxena-Belandia, Iban; Foroud, Tatiana; Atzmon, Gil; Pe’er, Itsik; Ioannou, Yiannis; McGovern, Dermot P.B.; Yue, Zhenyu; Schadt, Eric E.; Cho, Judy H.; Peter, Inga; Medical and Molecular Genetics, School of Medicine
    Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.
  • Loading...
    Thumbnail Image
    Item
    Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing
    (Springer Nature, 2019-03) Kunkle, Brian W.; Grenier-Boley, Benjamin; Sims, Rebecca; Bis, Joshua C.; Damotte, Vincent; Naj, Adam C.; Boland, Anne; Vronskaya, Maria; van der Lee, Sven J.; Amlie-Wolf, Alexandre; Bellenguez, Céline; Frizatti, Aura; Chouraki, Vincent; Martin, Eden R.; Sleegers, Kristel; Badarinarayan, Nandini; Jakobsdottir, Johanna; Hamilton-Nelson, Kara L.; Moreno-Grau, Sonia; Olaso, Robert; Raybould, Rachel; Chen, Yuning; Kuzma, Amanda B.; Hiltunen, Mikko; Morgan, Taniesha; Ahmad, Shahzad; Vardarajan, Badri N.; Epelbaum, Jacques; Hoffmann, Per; Boada, Merce; Beecham, Gary W.; Garnier, Jean-Guillaume; Harold, Denise; Fitzpatrick, Annette L.; Valladares, Otto; Moutet, Marie-Laure; Gerrish, Amy; Smith, Albert V.; Qu, Liming; Bacq, Delphine; Denning, Nicola; Jian, Xueqiu; Zhao, Yi; Del Zompo, Maria; Fox, Nick C.; Choi, Seung-Hoan; Mateo, Ignacio; Hughes, Joseph T.; Adams, Hieab H.; Malamon, John; Sanchez-Garcia, Florentino; Patel, Yogen; Brody, Jennifer A.; Dombroski, Beth A.; Deniz Naranjo, Maria Candida; Daniilidou, Makrina; Eiriksdottir, Gudny; Mukherjee, Shubhabrata; Wallon, David; Uphill, James; Aspelund, Thor; Cantwell, Laura B.; Garzia, Fabienne; Galimberti, Daniela; Hofer, Edith; Butkiewicz, Mariusz; Fin, Bertrand; Scarpini, Elio; Sarnowski, Chloe; Bush, Will S.; Meslage, Stéphane; Kornhuber, Johannes; White, Charles C.; Song, Yuenjoo; Barber, Robert C.; Engelborghs, Sebastiaan; Sordon, Sabrina; Voijnovic, Dina; Adams, Perrie M.; Vandenberghe, Rik; Mayhaus, Manuel; Cupples, L. Adrienne; Albert, Marilyn S.; De Deyn, Peter P.; Gu, Wei; Himali, Jayanadra J.; Beekly, Duane; Squassina, Alessio; Hartmann, Annette M.; Orellana, Adelina; Blacker, Deborah; Rodriguez-Rodriguez, Eloy; Lovestone, Simon; Garcia, Melissa E.; Doody, Rachelle S.; Munoz-Fernadez, Carmen; Sussams, Rebecca; Lin, Honghuang; Fairchild, Thomas J.; Benit, Yolanda A.; Holmes, Clive; Karamujić-Čomić, Hata; Frosch, Matthew P.; Thonberg, Hakan; Maier, Wolfgang; Roshchupkin, Gennady; Ghetti, Bernardino; Giedraitis, Vilmantas; Kawalia, Amit; Li, Shuo; Huebinger, Ryan M.; Kilander, Lena; Moebus, Susanne; Hernández, Isabel; Kamboh, M. Ilyas; Brundin, RoseMarie; Turton, James; Yang, Qiong; Katz, Mindy J.; Concari, Letizia; Lord, Jenny; Beiser, Alexa S.; Keene, C. Dirk; Helisalmi, Seppo; Kloszewska, Iwona; Kukull, Walter A.; Koivisto, Anne Maria; Lynch, Aoibhinn; Tarraga, Lluís; Larson, Eric B.; Haapasalo, Annakaisa; Lawlor, Brian; Mosley, Thomas H.; Lipton, Richard B.; Solfrizzi, Vincenzo; Gill, Michael; Longstreth, W. T., Jr.; Montine, Thomas J.; Frisardi, Vincenza; Diez-Fairen, Monica; Rivadeneira, Fernando; Petersen, Ronald C.; Deramecourt, Vincent; Alvarez, Ignacio; Salani, Francesca; Ciaramella, Antonio; Boerwinkle, Eric; Reiman, Eric M.; Fievet, Nathalie; Rotter, Jerome I.; Reisch, Joan S.; Hanon, Olivier; Cupidi, Chiara; Uitterlinden, A. G. Andre; Royall, Donald R.; Dufouil, Carole; Maletta, Raffaele Giovanni; de Rojas, Itziar; Sano, Mary; Brice, Alexis; Cecchetti, Roberta; St. George-Hyslop, Peter; Ritchie, Karen; Tsolaki, Magda; Tsuang, Debby W.; Dubois, Bruno; Craig, David; Wu, Chuang-Kuo; Soininen, Hilkka; Avramidou, Despoina; Albin, Roger L.; Fratiglioni, Laura; Germanou, Antonia; Apostolova, Liana G.; Keller, Lina; Koutroumani, Maria; Arnold, Steven E.; Panza, Francesco; Gkatzima, Olymbia; Asthana, Sanjay; Hannequin, Didier; Whitehead, Patrice; Atwood, Craig S.; Caffarra, Paolo; Hampel, Harald; Quintela, Inés; Carracedo, Ángel; Lannfelt, Lars; Rubinsztein, David C.; Barnes, Lisa L.; Pasquier, Florence; Frölich, Lutz; Barral, Sandra; McGuinness, Bernadette; Beach, Thomas G .; Johnston, Janet A.; Becker, James T.; Passmore, Peter; Bigio, Eileen H.; Schott, Jonathan M.; Bird, Thomas D.; Warren, Jason D.; Boeve, Bradley F.; Lupton, Michelle K.; Bowen, James D.; Proitsi, Petra; Boxer, Adam; Powell, John F.; Burke, James R.; Kauwe, John S.K.; Burns, Jeffrey M.; Mancuso, Michelangelo; Buxbaum, Joseph D.; Bonuccelli, Ubaldo; Cairns, Nigel J.; McQuillin, Andrew; Cao, Chuanhai; Livingston, Gill; Carlson, Chris S.; Bass, Nicholas J.; Carlsson, Cynthia M.; Hardy, John; Carney, Regina M.; Bras, Jose; Carrasquillo, Minerva M.; Guerreiro, Rita; Allen, Mariet; Chui, Helena C.; Fisher, Elizabeth; Masullo, Carlo; Crocco, Elizabeth A.; DeCarli, Charles; Bisceglio, Gina; Dick, Malcolm; Ma, Li; Duara, Ranjan; Graff-Radford, Neill R.; Evans, Denis A.; Hodges, Angela; Faber, Kelley M.; Scherer, Martin; Fallon, Kenneth B.; Riemenschneider, Matthias; Fardo, David W.; Heun, Reinhard; Farlow, Martin R.; Kölsch, Heike; Ferris, Steven; Leber, Markus; Foroud, Tatiana M.; Heuser, Isabella; Galasko, Douglas R.; Giegling, Ina; Gearing, Marla; Hüll, Michael; Geschwind, Daniel H.; Gilbert, John R.; Morris, John; Green, Robert C.; Mayo, Kevin; Growdon, John H.; Feulner, Thomas; Hamilton, Ronald L.; Harrell, Lindy E.; Drichel, Dmitriy; Honig, Lawrence S.; Cushion, Thomas D.; Huentelman, Matthew J.; Hollingworth, Paul; Hulette, Christine M.; Hyman, Bradley T.; Marshall, Rachel; Jarvik, Gail P.; Meggy, Alun; Abner, Erin; Menzies, Georgina E.; Jin, Lee-Way; Leonenko, Ganna; Real, Luis M.; Jun, Gyungah R.; Baldwin, Clinton T.; Grozeva, Detelina; Karydas, Anna; Russo, Giancarlo; Kaye, Jeffrey A.; Kim, Ronald; Jessen, Frank; Kowall, Neil W.; Vellas, Bruno; Kramer, Joel H.; Vardy, Emma; LaFerla, Frank M.; Jöckel, Karl-Heinz; Lah, James J.; Dichgans, Martin; Leverenz, James B.; Mann, David; Levey, Allan I.; Pickering-Brown, Stuart; Lieberman, Andrew P.; Klopp, Norman; Lunetta, Kathryn L.; Wichmann, H-Erich; Lyketsos, Constantine G.; Morgan, Kevin; Marson, Daniel C.; Brown, Kristelle; Martiniuk, Frank; Medway, Christopher; Mash, Deborah C.; Nöthen, Markus M.; Masliah, Eliezer; Hooper, Nigel M.; McCormick, Wayne C.; Daniele, Antonio; McCurry, Susan M.; Bayer, Anthony; McDavid, Andrew N.; Gallacher, John; McKee, Ann C.; van den Bussche, Hendrik; Mesulam, Marsel; Brayne, Carol; Miller, Bruce L.; Riedel-Heller, Steffi; Miller, Carol A.; Miller, Joshua W.; Al-Chalabi, Ammar; Morris, John C.; Shaw, Christopher E.; Myers, Amanda J.; Wiltfang, Jens; O'Bryant, Sid; Olichney, John M.; Alvarez, Victoria; Parisi, Joseph E.; Singleton, Andrew B.; Paulson, Henry L.; Collinge, John; Perry, William R.; Mead, Simon; Peskind, Elaine; Cribbs, David H.; Rossor, Martin; Pierce, Aimee; Ryan, Natalie S.; Poon, Wayne W.; Nacmias, Benedetta; Potter, Huntington; Sorbi, Sandro; Quinn, Joseph F.; Sacchinelli, Eleonora; Raj, Ashok; Spalletta, Gianfranco; Raskind, Murray; Caltagirone, Carlo; Bossù, Paola; Orfei, Maria Donata; Reisberg, Barry; Clarke, Robert; Reitz, Christiane; Smith, A. David; Ringman, John M.; Warden, Donald; Roberson, Erik D.; Wilcock, Gordon; Rogaeva, Ekaterina; Bruni, Amalia Cecilia; Rosen, Howard J.; Gallo, Maura; Rosenberg, R.N.; Ben-Shlomo, Yoav; Sager, Mark A.; Mecocci, Patrizia; Saykin, Andrew J.; Pastor, Pau; Cuccaro, Michael L.; Vance, Jeffery M.; Schneider, Julie A.; Schneider, Lori S.; Slifer, Susan; Seeley, William W.; Smith, Amanda G.; Sonnen, Joshua A.; Spina, Salvatore; Stern, Robert A.; Swerdlow, Russell H.; Tang, Mitchell; Tanzi, Rudolph E.; Trojanowski, John Q.; Troncoso, Juan C.; Van Deerlin, Vivianna M.; Van Eldik, Linda J.; Vinters, Harry V.; Vonsattel, Jean Paul; Weintraub, Sandra; Welsh-Bohmer, Kathleen A.; Wilhelmsen, Kirk C.; Williamson, Jennifer; Wingo, Thomas S.; Woltjer, Randall L.; Wright, Clinton B.; Yu, Chang-En; Yu, Lei; Saba, Yasaman; Pilotto, Alberto; Bullido, Maria J.; Peters, Oliver; Crane, Paul K.; Bennett, David; Bosco, Paola; Coto, Eliecer; Boccardi, Virginia; De Jager, Phil L.; Lleo, Alberto; Warner, Nick; Lopez, Oscar L.; Ingelsson, Martin; Deloukas, Panagiotis; Cruchaga, Carlos; Graff, Caroline; Gwilliam, Rhian; Fornage, Myriam; Goate, Alison M.; Sanchez-Juan, Pascual; Kehoe, Patrick G.; Amin, Najaf; Ertekin-Taner, Nilifur; Berr, Claudine; Debette, Stéphanie; Love, Seth; Launer, Lenore J.; Younkin, Steven G.; Dartigues, Jean-Francois; Corcoran, Chris; Ikram, M. Arfan; Dickson, Dennis W.; Nicolas, Gael; Campion, Dominique; Tschanz, JoAnn; Schmidt, Helena; Hakonarson, Hakon; Clarimon, Jordi; Munger, Ron; Schmidt, Reinhold; Farrer, Lindsay A.; Van Broeckhoven, Christine; O'Donovan, Michael C.; DeStefano, Anita L.; Jones, Lesley; Haines, Jonathan L.; Deleuze, Jean-Francois; Owen, Michael J.; Gudnason, Vilmundur; Mayeux, Richard; Escott-Price, Valentina; Psaty, Bruce M.; Ramirez, Alfredo; Wang, Li-San; Ruiz, Agustin; van Duijn, Cornelia M.; Holmans, Peter A.; Seshadri, Sudha; Williams, Julie; Amouyel, Phillippe; Schellenberg, Gerard D.; Lambert, Jean-Charles; Pericak-Vance, Margaret A.; Pathology and Laboratory Medicine, School of Medicine
    Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 × 10-7), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.
  • Loading...
    Thumbnail Image
    Item
    Genetic variants in the SHISA6 gene are associated with delayed cognitive impairment in two family datasets
    (Wiley, 2023) Ramos, Jairo; Caywood, Laura J.; Prough, Michael B.; Clouse, Jason E.; Herington, Sharlene D.; Slifer, Susan H.; Fuzzell, M. Denise; Fuzzell, Sarada L.; Hochstetler, Sherri D.; Miskimen, Kristy L.; Main, Leighanne R.; Osterman, Michael D.; Zaman, Andrew F.; Whitehead, Patrice L.; Adams, Larry D.; Laux, Renee A.; Song, Yeunjoo E.; Foroud, Tatiana M.; Mayeux, Richard P.; St. George-Hyslop, Peter; Ogrocki, Paula K.; Lerner, Alan J.; Vance, Jeffery M.; Cuccaro, Michael L.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Scott, William K.; Medical and Molecular Genetics, School of Medicine
    Introduction: Studies of cognitive impairment (CI) in Amish communities have identified sibships containing CI and cognitively unimpaired (CU) individuals. We hypothesize that CU individuals may carry protective alleles delaying age at onset (AAO) of CI. Methods: A total of 1522 individuals screened for CI were genotyped. The outcome studied was AAO for CI individuals or age at last normal exam for CU individuals. Cox mixed-effects models examined association between age and single nucleotide variants (SNVs). Results: Three SNVs were significantly associated (P < 5 × 10-8 ) with AAO on chromosomes 6 (rs14538074; hazard ratio [HR] = 3.35), 9 (rs534551495; HR = 2.82), and 17 (rs146729640; HR = 6.38). The chromosome 17 association was replicated in the independent National Institute on Aging Genetics Initiative for Late-Onset Alzheimer's Disease dataset. Discussion: The replicated genome-wide significant association with AAO on chromosome 17 is located in the SHISA6 gene, which is involved in post-synaptic transmission in the hippocampus and is a biologically plausible candidate gene for Alzheimer's disease.
  • Loading...
    Thumbnail Image
    Item
    Genomewide Association Studies of LRRK2 Modifiers of Parkinson's Disease
    (Wiley, 2021-07) Lai, Dongbing; Alipanahi, Babak; Fontanillas, Pierre; Schwantes, Tae-Hwi; Aasly, Jan; Alcalay, Roy N.; Beecham, Gary W.; Berg, Daniela; Bressman, Susan; Brice, Alexis; Brockman, Kathrin; Clark, Lorraine; Cookson, Mark; Das, Sayantan; Van Deerlin, Vivianna; Follett, Jordan; Farrer, Matthew J.; Trinh, Joanne; Gasser, Thomas; Goldwurm, Stefano; Gustavsson, Emil; Klein, Christine; Lang, Anthony E.; Langston, J. William; Latourelle, Jeanne; Lynch, Timothy; Marder, Karen; Marras, Connie; Martin, Eden R.; McLean, Cory Y.; Mejia-Santana, Helen; Molho, Eric; Myers, Richard H.; Nuytemans, Karen; Ozelius, Laurie; Payami, Haydeh; Raymond, Deborah; Rogaeva, Ekaterina; Rogers, Michael P.; Ross, Owen A.; Samii, Ali; Saunders-Pullman, Rachel; Schüle, Birgitt; Schulte, Claudia; Scott, William K.; Tanner, Caroline; Tolosa, Eduardo; Tomkins, James E.; Vilas, Dolores; Trojanowski, John Q.; Uitti, Ryan; Vance, Jeffery M.; Visanji, Naomi P.; Wszolek, Zbigniew K.; Zabetian, Cyrus P.; Mirelman, Anat; Giladi, Nir; Urtreger, Avi Orr; Cannon, Paul; Fiske, Brian; Foroud, Tatiana; Medical and Molecular Genetics, School of Medicine
    Objective: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. Methods: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. Results: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. Interpretation: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94.
  • Loading...
    Thumbnail Image
    Item
    Identification of TMEM230 mutations in familial Parkinson's disease
    (Nature Research, 2016-07) Deng, Han-Xiang; Shi, Yong; Yang, Yi; Ahmeti, Kreshnik B.; Miller, Nimrod; Huang, Cao; Cheng, Lijun; Zhai, Hong; Deng, Sheng; Nuytemans, Karen; Corbett, Nicola J.; Kim, Myung Jong; Deng, Hao; Tang, Baisha; Yang, Ziquang; Xu, Yanming; Chen, Piao; Huang, Bo; Gao, Xiao-Ping; Song, Zhi; Liu, Zhenhua; Fecto, Faisal; Siddique, Nailah; Foroud, Tatiana; Jankovic, Joseph; Ghetti, Bernardino; Nicholson, Daniel A.; Krainc, Dimitri; Melen, Onur; Vance, Jeffery M.; Pericak-Vance, Margaret A.; Ma, Yong-Chao; Rajput, Ali H.; Siddique, Teepu; Medical and Molecular Genetics, School of Medicine
    Parkinson's disease is the second most common neurodegenerative disorder without effective treatment. It is generally sporadic with unknown etiology. However, genetic studies of rare familial forms have led to the identification of mutations in several genes, which are linked to typical Parkinson's disease or parkinsonian disorders. The pathogenesis of Parkinson's disease remains largely elusive. Here we report a locus for autosomal dominant, clinically typical and Lewy body-confirmed Parkinson's disease on the short arm of chromosome 20 (20pter-p12) and identify TMEM230 as the disease-causing gene. We show that TMEM230 encodes a transmembrane protein of secretory/recycling vesicles, including synaptic vesicles in neurons. Disease-linked TMEM230 mutants impair synaptic vesicle trafficking. Our data provide genetic evidence that a mutant transmembrane protein of synaptic vesicles in neurons is etiologically linked to Parkinson's disease, with implications for understanding the pathogenic mechanism of Parkinson's disease and for developing rational therapies.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University