- Browse by Author
Browsing by Author "Trippel, Stephen B."
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item Anisotropic Properties of Articular Cartilage in an Accelerated In Vitro Wear Test(Elsevier, 2020-09) Hossain, M. Jayed; Noori-Dokht, Hessam; Karnik, Sonali; Alyafei, Naomi; Joukar, Amin; Trippel, Stephen B.; Wagner, Diane R.; Mechanical and Energy Engineering, School of Engineering and TechnologyMany material properties of articular cartilage are anisotropic, particularly in the superficial zone where collagen fibers have a preferential direction. However, the anisotropy of cartilage wear had not been previously investigated. The objective of this study was to evaluate the anisotropy of cartilage material behavior in an in vitro wear test. The wear and coefficient of friction of bovine condylar cartilage were measured with loading in directions parallel (longitudinal) and orthogonal (transverse) to the collagen fiber orientation at the articular surface. An accelerated cartilage wear test was performed against a T316 stainless-steel plate in a solution of phosphate buffered saline with protease inhibitors. A constant load of 160 N was maintained for 14000 cycles of reciprocal sliding motion at 4 mm/s velocity and a travel distance of 18 mm in each direction. The contact pressure during the wear test was approximately 2 MPa, which is in the range of that reported in the human knee and hip joint. Wear was measured by biochemically quantifying the glycosaminoglycans (GAGs) and collagen that was released from the tissue during the wear test. Collagen damage was evaluated with collagen hybridizing peptide (CHP), while visualization of the tissue composition after the wear test was provided with histologic analysis. Results demonstrated that wear in the transverse direction released about twice as many GAGs than in the longitudinal direction, but that no significant differences were seen in the amount of collagen released from the specimens. Specimens worn in the transverse direction had a higher intensity of CHP stain than those worn in the longitudinal direction, suggesting more collagen damage from wear in the transverse direction. No anisotropy in friction was detected at any point in the wear test. Histologic and CHP images demonstrate that the GAG loss and collagen damage extended through much of the depth of the cartilage tissue, particularly for wear in the transverse direction. These results highlight distinct differences between cartilage wear and the wear of traditional engineering materials, and suggest that further study on cartilage wear is warranted. A potential clinical implication of these results is that orienting osteochondral grafts such that the direction of wear is aligned with the primary fiber direction at the articular surface may optimize the life of the graft.Item Biomedical Engineering Advancements after Management of Myelomeningocele Study (MOMS): A Narrative Review(University of Pittsburgh Library System, 2022) Campbell, Natalie C.; Trippel, Stephen B.; Nauman, Eric A.; Orthopaedic Surgery, School of MedicineSpina bifida is a neural tube defect resulting from an incomplete closure of the caudal neuropore. The most debilitating form of spina bifida, myelomeningocele (MMC), can present with Chiari II malformation with concomitant hydrocephalus, bowel and bladder abnormalities, and impaired motor function of the lower limbs. The incidence rate of spina bifida is 3.4 per 10,000 live births reported within the US. Advancements in the standard therapy, namely prenatal intervention pioneered by the Management of Myelomeningocele Study (MOMS), have aimed to reduce maternal and fetal complications, and yet complications were increased, calling for the need of further improvements. Beyond current standard interventions for MMC, the most promising developments have employed various biomedical methods ranging from isolated stem cell injections to biodegradable scaffold patches. These scaffolds can be biologic or synthetic and are often incorporated with bioactive proteins or stem cells. This review discusses the benefits and limitations of post-MOMS era biomedical engineering intervention articles found in 3 medical and biomedical databases consisting of systematic reviews, meta-analyses, randomized control trials, and experimental studies. After analysis of the advancements and limitations of these studies, an engineered synthetic biodegradable scaffold seeded with bioactive proteins and stem cells create a superior scaffold possessing watertight impermeability and cytocompatibility for successful coverage and host integration with minimal inflammation. Coupled with minimally invasive intra-amniotic injection delivery, an earlier mitigation could further prevent progression of poor neurologic outcomes, and possibly even regenerate neuronal tissue in patients with MMC.Item Comparative Effectiveness of Structural versus Regulatory Protein Gene Transfer on Articular Chondrocyte Matrix Gene Expression(Sage, 2019-01) Shi, Shuiliang; Wang, Congrong; Chan, Albert; Kirmani, Kashif; Eckert, George J.; Trippel, Stephen B.; Orthopaedic Surgery, IU School of MedicineOBJECTIVE: The production of extracellular matrix is a necessary component of articular cartilage repair. Gene transfer is a promising method to improve matrix biosynthesis by articular chondrocytes. Gene transfer may employ transgenes encoding regulatory factors that stimulate the production of matrix proteins, or may employ transgenes that encode the proteins themselves. The objective of this study was to determine which of these 2 approaches would be the better choice for further development. We compared these 2 approaches using the transgenes encoding the structural matrix proteins, aggrecan or type II collagen, and the transgene encoding the anabolic factor, insulin-like growth factor I (IGF-I). METHODS: We transfected adult bovine articular chondrocytes with constructs encoding type II collagen, aggrecan, or IGF-I, and measured the expression of type II collagen ( COL2A1) and aggrecan ( ACAN) from their native genes and from their transgenes. RESULTS: IGF-I gene ( IGF1) transfer increased the expression of the native chondrocyte COL2A1 and ACAN genes 2.4 and 2.9 times control, respectively. COL2A1 gene transfer did not significantly increase COL2A1 transcripts, even when the transgene included the genomic COL2A1 regulatory sequences stimulated by chondrogenic growth factors. In contrast, ACAN gene transfer increased ACAN transcripts up to 3.4 times control levels. IGF1, but not ACAN, gene transfer increased aggrecan protein production. CONCLUSION: Taken together, these results suggest that the type II collagen and aggrecan production required for articular cartilage repair will be more effectively achieved by genes that encode anabolic regulatory factors than by genes that encode the matrix molecules themselves.Item Comparison of Efficacy of Endogenous and Exogenous IGF-I in Stimulating Matrix Production in Neonatal and Mature Chondrocytes.(SAGE, 2015-10) Aguilar, Izath N.; Trippel, Stephen B.; Shi, Shuiliang; Bonassar, Lawrence J.; Department of Anatomy and Cell Biology, IU School of MedicineObjective: The goal of this study was to compare the efficacy of endogenous upregulation of IGF-I by gene therapy and exogenous addition of insulin-like growth factor I (IGF-I) in enhancing proteoglycan synthesis by skeletally mature and neonatal chondrocytes. Chondrocyte transplantation therapy is a common treatment for focal cartilage lesions, with both mature and neonatal chondrocytes used as a cell source. Additionally, gene therapy strategies to upregulate growth factors such as IGF-I have been proposed to augment chondrocyte transplantation therapies. Methods: Both skeletally mature and neonatal chondrocytes were exposed to either an adeno-associated virus-based plasmid containing the IGF-I gene or exogenous IGF-I. Results: Analysis of IGF-I and glycosaminoglycan production using a 4-parameter dose-response model established a clear connection between the amount of IGF-I produced by cells and their biosynthetic response. Both neonatal and mature chondrocytes showed this relationship, but the sensitivities were quite different, with EC50 of 0.57 ng/mL for neonatal chondrocytes and EC50 of 8.70 ng/mL IGF-I for skeletally mature chondrocytes. Conclusions: These data suggest that IGF-I gene therapy may be more effective with younger cell sources. Both cell types were less sensitive to exogenous IGF-I than endogenous IGF-I.Item Correlation analysis of cartilage wear with biochemical composition, viscoelastic properties and friction(Elsevier, 2023) Joukar, Amin; Creecy, Amy; Karnik, Sonali; Noori-Dokht, Hessam; Trippel, Stephen B.; Wallace, Joseph M.; Wagner, Diane R.; Orthopaedic Surgery, School of MedicineHealthy articular cartilage exhibits remarkable resistance to wear, sustaining mechanical loads and relative motion for decades. However, tissues that replace or repair cartilage defects are much less long lasting. Better information on the compositional and material characteristics that contribute to the wear resistance of healthy cartilage could help guide strategies to replace and repair degenerated tissue. The main objective of this study was to assess the relationship between wear of healthy articular cartilage, its biochemical composition, and its viscoelastic material properties. The correlation of these factors with the coefficient of friction during the wear test was also evaluated. Viscoelastic properties of healthy bovine cartilage were determined via stress relaxation indentation. The same specimens underwent an accelerated, in vitro wear test, and the amount of glycosaminoglycans (GAGs) and collagen released during the wear test were considered measures of wear. The frictional response during the wear test was also recorded. The GAG, collagen and water content and the concentration of the enzymatic collagen crosslink pyridinoline were quantified in tissue that was adjacent to each wear test specimen. Finally, correlation analysis was performed to identify potential relationships between wear characteristics of healthy articular cartilage with its composition, viscoelastic material properties and friction. The findings suggest that stiffer cartilage with higher GAG, collagen and water content has a higher wear resistance. Enzymatic collagen crosslinks also enhance the wear resistance of the collagen network. The parameters of wear, composition, and mechanical stiffness of cartilage were all correlated with one another, suggesting that they are interrelated. However, friction was largely independent of these in this study. The results identify characteristics of healthy articular cartilage that contribute to its remarkable wear resistance. These data may be useful for guiding techniques to restore, regenerate, and stabilize cartilage tissue.Item Decreased SIRT1 Activity Is Involved in the Acute Injury Response of Chondrocytes to Ex Vivo Injurious Mechanical Overload(MDPI, 2023-03-30) Karnik, Sonali; Noori-Dokht, Hessam; Williams, Taylor; Joukar, Amin; Trippel, Stephen B.; Sankar, Uma; Wagner, Diane R; Mechanical and Energy Engineering, School of Engineering and TechnologyA better understanding of molecular events following cartilage injury is required to develop treatments that prevent or delay the onset of trauma-induced osteoarthritis. In this study, alterations to SIRT1 activity in bovine articular cartilage explants were evaluated in the 24 h following a mechanical overload, and the effect of pharmacological SIRT1 activator SRT1720 on acute chondrocyte injury was assessed. SIRT1 enzymatic activity decreased as early as 5 min following the mechanical overload, and remained suppressed for at least 24 h. The chondrocyte injury response, including apoptosis, oxidative stress, secretion of inflammatory mediators, and alterations in cartilage matrix expression, was prevented with pharmacological activation of SIRT1 in a dose-dependent manner. Overall, the results implicate SIRT1 deactivation as a key molecular event in chondrocyte injury following a mechanical impact overload. As decreased SIRT1 signaling is associated with advanced age, these findings suggest that downregulated SIRT1 activity may be common to both age-related and injury-induced osteoarthritis.Item Exploring Chondrocyte Integrin Regulation of Growth Factor IGF-I Expression from a Transient pAAV Vector(2013-08-20) Ratley, Samantha Kay; Trippel, Stephen B.; Lin, Chien-Chi; Stocum, David L.Insulin-like Growth Factor I (IGF-I) is a growth factor that stimulates both mitogenic and anabolic responses in articular chondrocytes. While it has been shown that exogenous IGF-I can regulate chondrocyte integrins, little is known regarding regulatory effects of IGF-I produced from a transiently expressed plasmid based adeno-associated virus (pAAV) vector. Because chondrocytes are using cellular machinery to overexpress IGF-I, it is of interest to see whether or not pAAV IGF-I will significantly upregulate or downregulate chondrocyte integrins. Additionally, it is of interest to know whether chondrocyte adhesion through integrins will have any regulatory effects on the production of IGF-I from the transgene. Therefore, this study will ascertain if pAAV IGF-I will have similar effects that exogenous IGF-I has on integrin regulation and if integrin silencing mechanisms will affect the production of IGF-I from the transgene. To test these hypotheses, adult articular chondrocytes were doubly transfected with the pAAV vector for IGF-I and short interference ribonucleic acid (siRNA) for integrins beta 1 and alpha V. Gene products were monitored at the transcriptional levels using quantitative real time polymerase chain reactions (qPCR) and IGF-I protein production was monitored at the translational level using enzyme linked immunoabsorbant assays (ELISAs). Adult articular chondrocytes doubly transfected were encapsulated in a three dimensional hydrogel system to simulate an in vivo environment. Samples were collected for analysis at days 2, 4, and 6 post encapsulation. Results show that IGF-I treatment with the pAAV vector does not cause significant changes in the transcriptional regulation of the beta 1 integrin in a three dimensional hydrogel system. The pAAV IGF-I vector did not cause significant regulatory changes on integrin alpha V at any time point during the experiment. Additionally, by knocking down the expression levels of integrins by using siRNA, it was shown that integrin knockdown does not have a significant regulatory effect on transcriptional or translational expression levels of IGF-I from the pAAV vector.Item Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro(Wiley, 2017-03) Bonitsky, Craig M.; McGann, Megan E.; Selep, Michael J.; Ovaert, Timothy C.; Trippel, Stephen B.; Wagner, Diane R.; Department of Engineering Technology, School of Engineering and TechnologyHigh energy trauma to cartilage causes surface fissures and microstructural damage, but the degree to which this damage renders the tissue more susceptible to wear and contributes to the progression of post-traumatic osteoarthritis (PTOA) is unknown. Additionally, no treatments are currently available to strengthen cartilage after joint trauma and to protect the tissue from subsequent degradation and wear. The purposes of this study were to investigate the role of mechanical damage in the degradation and wear of cartilage, to evaluate the effects of impact and subsequent genipin crosslinking on the changes in the viscoelastic parameters of articular cartilage, and to test the hypothesis that genipin crosslinking is an effective treatment to enhance the resistance to biochemical degradation and mechanical wear. Results demonstrate that cartilage stiffness decreases after impact loading, likely due to the formation of fissures and microarchitectural damage, and is partially or fully restored by crosslinking. The wear resistance of impacted articular cartilage was diminished compared to undamaged cartilage, suggesting that mechanical damage that is directly induced by the impact may contribute to the progression of PTOA. However, the decrease in wear resistance was completely reversed by the crosslinking treatments. Additionally, the crosslinking treatments improved the resistance to collagenase digestion at the impact-damaged articular surface. These results highlight the potential therapeutic value of collagen crosslinking via genipin in the prevention of cartilage degeneration after traumatic injury.Item Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding(Elsevier, 2018-03) Shi, Shuiliang; Kelly, Brian J.; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J.; Trippel, Stephen B.; Orthopaedic Surgery, School of MedicineBackground Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Methods Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Results Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. Conclusion The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. General significance These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis.Item Hyaluronic acid–binding insulin-like growth factor-1: Creation of a gene encoding a bifunctional fusion protein(Springer, 2020-12) Shi, Shuiliang; Wang, Congrong; Trippel, Stephen B.; Orthopaedic Surgery, School of MedicineChondrogenic growth factors are promising therapeutic agents for articular cartilage repair. A persistent impediment to fulfilling this promise is a limited ability to apply and retain the growth factors within the region of cartilage damage that is in need of repair. Current therapies successfully deliver cells and/or matrices, but growth factors are subject to diffusion into the joint space and then loss from the joint. To address this problem, we created a novel gene that encodes a bifunctional fusion protein comprised by a matrix binding domain and a growth factor. The gene encodes the hyaluronic acid binding region of the cartilage matrix molecule, versican, and the chondrogenic growth factor, insulin-like growth factor-1 (IGF-1). We delivered the gene in an adeno-associated virus-based plasmid vector to articular chondrocytes. The cells synthesized and secreted the fusion protein gene product. The fusion protein bound to hyaluronic acid and retained the anabolic and mitogenic actions of IGF-1 on the chondrocytes. This proof-of-concept study suggests that the bifunctional fusion protein, in concert with chondrocytes and a hyaluronic acid-based delivery vehicle, may serve as an intra-articular therapy to help achieve articular cartilage repair.