- Browse by Author
Browsing by Author "Todd, Peter M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Neural evidence of switch processes during semantic and phonetic foraging in human memory(National Academy of Science, 2023) Lundin, Nancy B.; Brown, Joshua W.; Johns, Brendan T.; Jones, Michael N.; Purcell, John R.; Hetrick, William P.; O’Donnell, Brian F.; Todd, Peter M.; Psychiatry, School of MedicineHumans may retrieve words from memory by exploring and exploiting in "semantic space" similar to how nonhuman animals forage for resources in physical space. This has been studied using the verbal fluency test (VFT), in which participants generate words belonging to a semantic or phonetic category in a limited time. People produce bursts of related items during VFT, referred to as "clustering" and "switching." The strategic foraging model posits that cognitive search behavior is guided by a monitoring process which detects relevant declines in performance and then triggers the searcher to seek a new patch or cluster in memory after the current patch has been depleted. An alternative body of research proposes that this behavior can be explained by an undirected rather than strategic search process, such as random walks with or without random jumps to new parts of semantic space. This study contributes to this theoretical debate by testing for neural evidence of strategically timed switches during memory search. Thirty participants performed category and letter VFT during functional MRI. Responses were classified as cluster or switch events based on computational metrics of similarity and participant evaluations. Results showed greater hippocampal and posterior cerebellar activation during switching than clustering, even while controlling for interresponse times and linguistic distance. Furthermore, these regions exhibited ramping activity which increased during within-patch search leading up to switches. Findings support the strategic foraging model, clarifying how neural switch processes may guide memory search in a manner akin to foraging in patchy spatial environments.Item Semantic Search in Psychosis: Modeling Local Exploitation and Global Exploration(Oxford, 2020-04-20) Lundin, Nancy B.; Todd, Peter M.; Peter M., Michael N.; Avery, Johnathan E.; O’Donnell, Brian F.; Hetrick, William P.; Psychiatry, School of MedicineImpairments in category verbal fluency task (VFT) performance have been widely documented in psychosis. These deficits may be due to disturbed “cognitive foraging” in semantic space, in terms of altered salience of cues that influence individuals to search locally within a subcategory of semantically related responses (“clustering”) or globally between subcategories (“switching”). To test this, we conducted a study in which individuals with schizophrenia (n = 21), schizotypal personality traits (n = 25), and healthy controls (n = 40) performed VFT with “animals” as the category. Distributional semantic model Word2Vec computed cosine-based similarities between words according to their statistical usage in a large text corpus. We then applied a validated foraging-based search model to these similarity values to obtain salience indices of frequency-based global search cues and similarity-based local cues. Analyses examined whether diagnosis predicted VFT performance, search strategies, cue salience, and the time taken to switch between vs search within clusters. Compared to control and schizotypal groups, individuals with schizophrenia produced fewer words, switched less, and exhibited higher global cue salience, indicating a selection of more common words when switching to new clusters. Global cue salience negatively associated with vocabulary ability in controls and processing speed in schizophrenia. Lastly, individuals with schizophrenia took a similar amount of time to switch to new clusters compared to control and schizotypal groups but took longer to transition between words within clusters. Findings of altered local exploitation and global exploration through semantic memory provide preliminary evidence of aberrant cognitive foraging in schizophrenia.