ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Todarwal, Yogesh"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Distinct Heterocyclic Moieties Govern the Selectivity of Thiophene-Vinylene-Based Ligands Towards Aβ or Tau Pathology in Alzheime’s Disease
    (Wiley, 2023) Björk, Linnea; Shirani, Hamid; Todarwal, Yogesh; Linares, Mathieu; Vidal, Ruben; Ghetti, Bernardino; Norman, Patrick; Klingstedt, Therése; Nilsson, K. Peter R.; Pathology and Laboratory Medicine, School of Medicine
    Distinct aggregated proteins are correlated with numerous neurodegenerative diseases and the development of ligands that selectively detect these pathological hallmarks is vital. Recently, the synthesis of thiophene-based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs), that could be utilized for selective assignment of tau pathology in brain tissue with Alzheime's disease (AD) pathology, was reported. Herein, we investigate the ability of these ligands to selectively distinguish tau deposits from aggregated amyloid-β (Aβ), the second AD associated pathological hallmark, when replacing the terminal thiophene moiety with other heterocyclic motifs. The selectivity for tau pathology was reduced when introducing specific heterocyclic motifs, verifying that specific molecular interactions between the ligands and the aggregates are necessary for selective detection of tau deposits. In addition, ligands having certain heterocyclic moieties attached to the central thiophene-vinylene building block displayed selectivity to aggregated Aβ pathology. Our findings provide chemical insights for the development of ligands that can distinguish between aggregated proteinaceous species consisting of different proteins and might also aid in creating novel agents for clinical imaging of tau pathology in AD.
  • Loading...
    Thumbnail Image
    Item
    Tau Protein Binding Modes in Alzheimer's Disease for Cationic Luminescent Ligands
    (American Chemical Society, 2021) Todarwal, Yogesh; Gustafsson, Camilla; Minh, Nghia Nguyen Thi; Ertzgaard, Ingrid; Klingstedt, Therése; Ghetti, Bernardino; Vidal, Ruben; König, Carolin; Lindgren, Mikael; Nilsson, K. Peter R.; Linares, Mathieu; Norman, Patrick; Pathology and Laboratory Medicine, School of Medicine
    The bi-thiophene-vinylene-benzothiazole (bTVBT4) ligand developed for Alzheimer's disease (AD)-specific detection of amyloid tau has been studied by a combination of several theoretical methods and experimental spectroscopies. With reference to the cryo-EM tau structure of the tau protofilament ( Nature 2017, 547, 185), a periodic model system of the fibril was created, and the interactions between this fibril and bTVBT4 were studied with nonbiased molecular dynamics simulations. Several binding sites and binding modes were identified and analyzed, and the results for the most prevailing fibril site and ligand modes are presented. A key validation of the simulation work is provided by the favorable comparison of the theoretical and experimental absorption spectra of bTVBT4 in solution and bound to the protein. It is conclusively shown that the ligand-protein binding occurs at the hydrophobic pocket defined by the residues Ile360, Thr361, and His362. This binding site is not accessible in the Pick's disease (PiD) fold, and fluorescence imaging of bTVBT4-stained brain tissue samples from patients diagnosed with AD and PiD provides strong support for the proposed tau binding site.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University