- Browse by Author
Browsing by Author "Timsina, Jigyasha"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparative Analysis of Alzheimer's Disease Cerebrospinal Fluid Biomarkers Measurement by Multiplex SOMAscan Platform and Immunoassay-Based Approach(IOS Press, 2022) Timsina, Jigyasha; Gomez-Fonseca, Duber; Wang, Lihua; Do, Anh; Western, Dan; Alvarez, Ignacio; Aguilar, Miquel; Pastor, Pau; Henson, Rachel L.; Herries, Elizabeth; Xiong, Chengjie; Schindler, Suzanne E.; Fagan, Anne M.; Bateman, Randall J.; Farlow, Martin; Morris, John C.; Perrin, Richard J.; Moulder, Krista; Hassenstab, Jason; Vöglein, Jonathan; Chhatwal, Jasmeer; Mori, Hiroshi; Alzheimer’s Disease Neuroimaging Initiative; Dominantly Inherited Alzheimer Network Consortia; Sung, Yun Ju; Cruchaga, Carlos; Neurology, School of MedicineBackground: The SOMAscan assay has an advantage over immunoassay-based methods because it measures a large number of proteins in a cost-effective manner. However, the performance of this technology compared to the routinely used immunoassay techniques needs to be evaluated. Objective: We performed comparative analyses of SOMAscan and immunoassay-based protein measurements for five cerebrospinal fluid (CSF) proteins associated with Alzheimer's disease (AD) and neurodegeneration: NfL, Neurogranin, sTREM2, VILIP-1, and SNAP-25. Methods: We compared biomarkers measured in ADNI (N = 689), Knight-ADRC (N = 870), DIAN (N = 115), and Barcelona-1 (N = 92) cohorts. Raw protein values were transformed using z-score in order to combine measures from the different studies. sTREM2 and VILIP-1 had more than one analyte in SOMAscan; all available analytes were evaluated. Pearson's correlation coefficients between SOMAscan and immunoassays were calculated. Receiver operating characteristic curve and area under the curve were used to compare prediction accuracy of these biomarkers between the two platforms. Results: Neurogranin, VILIP-1, and NfL showed high correlation between SOMAscan and immunoassay measures (r > 0.9). sTREM2 had a fair correlation (r > 0.6), whereas SNAP-25 showed weak correlation (r = 0.06). Measures in both platforms provided similar predicted performance for all biomarkers except SNAP-25 and one of the sTREM2 analytes. sTREM2 showed higher AUC for SOMAscan based measures. Conclusion: Our data indicate that SOMAscan performs as well as immunoassay approaches for NfL, Neurogranin, VILIP-1, and sTREM2. Our study shows promise for using SOMAscan as an alternative to traditional immunoassay-based measures. Follow-up investigation will be required for SNAP-25 and additional established biomarkers.Item The CentiMarker Project: Standardizing Quantitative Alzheimer’s disease Fluid Biomarkers for Biologic Interpretation(medRxiv, 2024-07-27) Wang, Guoqiao; Li, Yan; Xiong, Chengjie; Cao, Yuchen; Schindler, Suzanne E.; McDade, Eric; Blennow, Kaj; Hansson, Oskar; Dage, Jeffrey L.; Jack, Clifford R., Jr.; Teunissen, Charlotte E.; Shaw, Leslie M.; Zetterberg, Henrik; Ibanez, Laura; Timsina, Jigyasha; Carlos, Cruchaga; DIAN-TU Study Team; Bateman, Randall J.; Neurology, School of MedicineIntroduction: Biomarkers have been essential to understanding Alzheimer's disease (AD) pathogenesis, pathophysiology, progression, and treatment effects. However, each biomarker measure is a representation of the biological target, the assay used to measure it, and the variance of the assay. Thus, biomarker measures are difficult to compare without standardization, and the units and magnitude of effect relative to the disease are difficult to appreciate, even for experts. To facilitate quantitative comparisons of AD biomarkers in the context of biologic and treatment effects, we propose a biomarker standardization approach between normal ranges and maximum abnormal AD ranges, which we refer to as CentiMarker, similar to the Centiloid approach used in PET. Methods: We developed a standardization scale that creates percentile values ranging from 0 for a normal population to 100 for the most abnormal measures across disease stages. We applied this scale to CSF and plasma biomarkers in autosomal dominant AD, assessing the distribution by estimated years from symptom onset, between biomarkers, and across cohorts. We then validated this approach in a large national sporadic AD cohort. Results: We found the CentiMarker scale provided an easily interpretable metric of disease abnormality. The biologic changes, range, and distribution of several AD fluid biomarkers including amyloid-β, phospho-tau and other biomarkers, were comparable across disease stages in both early onset autosomal dominant and sporadic late onset AD. Discussion: The CentiMarker scale offers a robust and versatile framework for the standardized biological comparison of AD biomarkers. Its broader adoption could facilitate biomarker reporting, allowing for more informed cross-study comparisons and contributing to accelerated therapeutic development.