- Browse by Author
Browsing by Author "Tang, Buyun"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Brain glycogen serves as a critical glucosamine cache required for protein glycosylation(Elsevier, 2021) Sun, Ramon C.; Young, Lyndsay E.A.; Bruntz, Ronald C.; Markussen, Kia H.; Zhou, Zhengqiu; Conroy, Lindsey R.; Hawkinson, Tara R.; Clarke, Harrison A.; Stanback, Alexandra E.; Macedo, Jessica K.A.; Emanuelle, Shane; Brewer, M. Kathryn; Rondon, Alberto L.; Mestas, Annette; Sanders, William C.; Mahalingan, Krishna K.; Tang, Buyun; Chikwana, Vimbai M.; Segvich, Dyann M.; Contreras, Christopher J.; Allenger, Elizabeth J.; Brainson, Christine F.; Johnson, Lance A.; Taylor, Richard E.; Armstrong, Dustin D.; Shaffer, Robert; Waechter, Charles J.; Vander Kooi, Craig W.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.; Drake, Richard R.; Gentry, Matthew S.; Biochemistry and Molecular Biology, School of MedicineGlycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.Item Discovery and Development of Small-Molecule Inhibitors of Glycogen Synthase(ACS, 2020-03) Tang, Buyun; Frasinyuk, Mykhaylo S.; Chikwana, Vimbai M.; Mahalingan, Krishna K.; Morgan, Cynthia A.; Segvich, Dyann M.; Bondarenko, Svitlana P.; Mrug, Galyna P.; Wyrebek, Przemyslaw; Watt, David S.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.; Biochemistry and Molecular Biology, School of MedicineThe overaccumulation of glycogen appears as a hallmark in various glycogen storage diseases (GSDs), including Pompe, Cori, Andersen, and Lafora disease. Accumulating evidence suggests that suppression of glycogen accumulation represents a potential therapeutic approach for treating these GSDs. Using a fluorescence polarization assay designed to screen for inhibitors of the key glycogen synthetic enzyme, glycogen synthase (GS), we identified a substituted imidazole, (rac)-2-methoxy-4-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)-4-phenyl-1H-imidazol-5-yl)phenol (H23), as a first-in-class inhibitor for yeast GS 2 (yGsy2p). Data from X-ray crystallography at 2.85 Å, as well as kinetic data, revealed that H23 bound within the uridine diphosphate glucose binding pocket of yGsy2p. The high conservation of residues between human and yeast GS in direct contact with H23 informed the development of around 500 H23 analogs. These analogs produced a structure–activity relationship profile that led to the identification of a substituted pyrazole, 4-(4-(4-hydroxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)pyrogallol, with a 300-fold improved potency against human GS. These substituted pyrazoles possess a promising scaffold for drug development efforts targeting GS activity in GSDs associated with excess glycogen accumulation.Item Discovery, Characterization, and Development of Small Molecule Inhibitors of Glycogen Synthase(2020-06) Tang, Buyun; Hurley, Thomas D.; Roach, Peter J.; Georgiadis, Millie M.; Johnson, Steven M.; Elmendorf, Jeffrey S.The over-accumulation of glycogen appears as a hallmark in various glycogen storage diseases (GSDs), including Pompe, Cori, Andersen, and Lafora disease. Glycogen synthase (GS) is the rate-limiting enzyme for glycogen synthesis. Recent evidence suggests that suppression of glycogen accumulation represents a potential therapeutic approach for treating these diseases. Herein, we describe the discovery, characterization, and development of small molecule inhibitors of GS through a multicomponent study including biochemical, biophysical, and cellular assays. Adopting an affinity-based fluorescence polarization assay, we identified a substituted imidazole molecule (H23), as a first-in-class inhibitor of yeast glycogen synthase 2 (yGsy2) from the 50,000 ChemBridge DIVERSet library. Structural data derived from X-ray crystallography at 2.85 Å, and enzyme kinetic data, revealed that H23 bound within the uridine diphosphate glucose binding pocket of yGsy2. Medicinal chemistry efforts examining over 500 H23 analogs produced structure-activity relationship (SAR) profiles that led to the identification of potent pyrazole and isoflavone compounds with low micromolar potency against human glycogen synthase 1 (hGYS1). Notably, several of the isoflavones demonstrated cellular efficacy toward suppressing glycogen accumulation. In an alternative effort to screen inhibitors directly against human GS, an activity-based assay was designed using a two-step colorimetric approach. This assay led to the identification of compounds with submicromolar potency to hGYS1 from a chemical library comprised of 10,000 compounds. One of the hit molecules, hexachlorophene, was crystallized bound to the active site of yGsy2. The structure was determined to 3.15 Å. Additional kinetic, mutagenic, and SAR studies validated the binding of hexachlorophene in the catalytic pocket and its non-competitive mode of inhibition. In summary, these two novel assays provided feasible biochemical platforms for large-scale screening of small molecule modulators of GS. The newly-developed, potent analogs possess diverse promising scaffolds for drug development efforts targeting GS activity in GSDs associated with excess glycogen accumulation.Item Ferrochelatase is a therapeutic target for ocular neovascularization(Wiley, 2017) Basavarajappa, Halesha D.; Sulaiman, Rania S.; Qi, Xiaoping; Shetty, Trupti; Babu, Sardar Sheik Pran; Sishtla, Kamakshi L.; Lee, Bit; Quigley, Judith; Alkhairy, Sameerah; Briggs, Christian M.; Gupta, Kamna; Tang, Buyun; Shadmand, Mehdi; Grant, Maria B.; Boulton, Michael E.; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineOcular neovascularization underlies major blinding eye diseases such as “wet” age-related macular degeneration (AMD). Despite the successes of treatments targeting the vascular endothelial growth factor (VEGF) pathway, resistant and refractory patient populations necessitate discovery of new therapeutic targets. Using a forward chemical genetic approach, we identified the heme synthesis enzyme ferrochelatase (FECH) as necessary for angiogenesis in vitro and in vivo. FECH is overexpressed in wet AMD eyes and murine choroidal neovascularization; siRNA knockdown of Fech or partial loss of enzymatic function in the Fechm1Pas mouse model reduces choroidal neovascularization. FECH depletion modulates endothelial nitric oxide synthase function and VEGF receptor 2 levels. FECH is inhibited by the oral antifungal drug griseofulvin, and this compound ameliorates choroidal neovascularization in mice when delivered intravitreally or orally. Thus, FECH inhibition could be used therapeutically to block ocular neovascularization.