- Browse by Author
Browsing by Author "Sun, Ying"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Association between Aldehyde Dehydrogenase 2 Glu504Lys Polymorphism and Alcoholic Liver Disease(Elsevier, 2018) Chang, Binxia; Hao, Shuli; Zhang, Longyu; Gao, Miaomiao; Sun, Ying; Huang, Ang; Teng, Guangju; Li, Baosen; Crabb, David W.; Kusumanchi, Praveen; Wang, Li; Liangpunsakul, Suthat; Zou, Zhengsheng; Medicine, School of MedicineBackground Only a subset of patients with excessive alcohol use develop alcoholic liver disease (ALD); though the exact mechanism is not completely understood. Once ingested, alcohol is metabolized by 2 key oxidative enzymes, alcohol (ADH) and aldehyde dehydrogenase (ALDH). There are 2 major ALDH isoforms, cytosolic and mitochondrial, encoded by the aldehyde ALDH1 and ALDH2 genes, respectively. The ALDH2 gene was hypothesized to alter genetic susceptibility to alcohol dependence and alcohol-induced liver diseases. The aim of this study is to determine the association between aldehyde dehydrogenase 2 (rs671) glu504lys polymorphism and ALD. Methods ALDH2 genotype was performed in 535 healthy controls and 281 patients with ALD. Results The prevalence of the common form of the SNP rs671, 504glu (glu/glu) was significantly higher in patients with ALD (95.4%) compared to that of controls (73.7%, p<0.0001). Among controls, 23.7% had heterozygous (glu/lys) genotype when compared to 4.6% in those with ALD (OR 0.16, 95%CI 0.09–0.28). The allele frequency for 504lys allele in patients with ALD was 2.3%; compared to 14.5% in healthy controls (OR 0.13, 95%CI 0.07–0.24). Conclusions Patients with ALDH2 504lys variant were less associated with ALD compared to those with ALDH2 504glu using both genotypic and allelic analyses.Item Characterization of lunar crust with moon mineralogy mapper data(2015-06-09) Sun, Ying; Lin, Li; Bird, Broxton; Johnson, Daniel; Licht, Kathy; Gilhooly, William P.This dissertation has three main focuses: (1) identify the distribution of a new rock type (Mg-spinel lithology) on the Moon and explore the likely petrogenesis of Mg-spinel; (2) investigate the presence of olivine in the crater central peaks and analyze the sources of olivine; (3) determine the compositional variations of lunar crust with depth, and establish a new model to describe the structure of the lunar crust.Item Massive crop expansion threatens agriculture and water sustainability in northwestern China(IOP, 2022-02-21) Lai, Jiameng; Li, Yanan; Chen, Jianli; Niu, Guo-Yue; Lin, Peirong; Li, Qi; Wang, Lixin; Han, Jimei; Luo, Zhenqi; Sun, Ying; Earth and Environmental Sciences, School of ScienceNorthwestern China (NWC) is among the major global hotspots undergoing massive terrestrial water storage (TWS) depletion. Yet driver(s) underlying such region-wide depletion remain controversial, i.e. warming-induced glaciermelting versus anthropogenic activities. Reconciling this controversy is the core initial step to guide policymaking to combat the dual challenges in agriculture production and water scarcity in the vastly dry NWC toward sustainable development. Utilizing diverse observations, we found persistent cropland expansion by >1.2 × 104 km2 since 2003, leading to growth of 59.9% in irrigated area and 19.5% in agricultural water use, despite a steady enhancement in irrigation efficiency. Correspondingly, a substantially faster evapotranspiration (ET) increase occurred in crop expansion areas, whereas precipitation exhibited no long-term trend. Counterfactual analyses suggest that the region-wide TWS depletion is unlikely to have occurred without an increase in crop expansion-driven ET even in the presence of glaciermelting. These findings imply that sustainable water management is critically needed to ensure agriculture and water security in NWC.