- Browse by Author
Browsing by Author "Storniolo, Anna Maria V."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item A Multicenter Phase II Trial of Ipilimumab and Nivolumab in Unresectable or Metastatic Metaplastic Breast Cancer: Cohort 36 of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART, SWOG S1609)(American Association for Cancer Research, 2022) Adams, Sylvia; Othus, Megan; Patel, Sandip Pravin; Miller, Kathy D.; Chugh, Rashmi; Schuetze, Scott M.; Chamberlin, Mary D.; Haley, Barbara J.; Storniolo, Anna Maria V.; Reddy, Mridula P.; Anderson, Scott A.; Zimmerman, Collin T.; O'Dea, Anne P.; Mirshahidi, Hamid R.; Ahnert, Jordi Rodon; Brescia, Frank J.; Hahn, Olwen; Raymond, Jane M.; Biggs, David D.; Connolly, Roisin M.; Sharon, Elad; Korde, Larissa A.; Gray, Robert J.; Mayerson, Edward; Plets, Melissa; Blanke, Charles D.; Chae, Young Kwang; Kurzrock, Razelle; Medicine, School of MedicinePurpose: Metaplastic breast cancer (MpBC) is a rare aggressive subtype that responds poorly to cytotoxics. Median survival is approximately 8 months for metastatic disease. We report results for advanced MpBC treated with ipilimumab + nivolumab, a cohort of S1609 for rare cancers (DART: NCT02834013). Patients and methods: Prospective, open-label, multicenter phase II (two-stage) trial of ipilimumab (1 mg/kg i.v. every 6 weeks) plus nivolumab (240 mg i.v. every 2 weeks) for advanced MpBC. Primary endpoint was objective response rate (ORR). Secondary endpoints included progression-free survival (PFS), overall survival (OS), and toxicity. Results: Overall, 17 evaluable patients enrolled. Median age was 60 years (26-85); median number of prior therapy lines was 2 (0-5). ORR was 18%; 3 of 17 patients achieved objective responses (1 complete, 2 partial responses; 2 spindle cell, 1 chondromyxoid histology), which are ongoing at 28+, 33+, and 34+ months, respectively. Median PFS and OS were 2 and 12 months, respectively. Altogether, 11 patients (65%) experienced adverse events (AE), including one grade 5 AE. Eight patients (47%) developed an immune-related AE (irAE), with adrenal insufficiency observed in all 3 responders. Responses occurred in tumors with low tumor mutational burden, low PD-L1, and absent tumor-infiltrating lymphocytes. Conclusions: The ipilimumab and nivolumab combination showed no new safety signals and met its primary endpoint with 18% ORR in advanced, chemotherapy-refractory MpBC. All responses are ongoing at >2 to almost 3 years later. The effect of ipilimumab and nivolumab was associated with exceptional responses in a subset of patients versus no activity. This combination warrants further investigation in MpBC, with special attention to understanding mechanism of action, and carefully designed to weigh against the significant risks of irAEs.Item Aberrant epigenetic and transcriptional events associated with breast cancer risk(BMC, 2022-02-09) Marino, Natascia; German, Rana; Podicheti, Ram; Rusch, Douglas B.; Rockey, Pam; Huang, Jie; Sandusky, George E.; Temm, Constance J.; Althouse, Sandra; Nephew, Kenneth P.; Nakshatri, Harikrishna; Liu, Jun; Vode, Ashley; Cao, Sha; Storniolo, Anna Maria V.; Medicine, School of MedicineBackground: Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation. Results: Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified. Conclusions: Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.Item Association of Circulating Tumor DNA and Circulating Tumor Cells After Neoadjuvant Chemotherapy With Disease Recurrence in Patients With Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial(American Medical Association, 2020-09) Radovich, Milan; Jiang, Guanglong; Hancock, Bradley A.; Chitambar, Christopher; Nanda, Rita; Falkson, Carla; Lynce, Filipa C.; Gallagher, Christopher; Isaacs, Claudine; Blaya, Marcelo; Paplomata, Elisavet; Walling, Radhika; Daily, Karen; Mahtani, Reshma; Thompson, Michael A.; Graham, Robert; Cooper, Maureen E.; Pavlick, Dean C.; Albacker, Lee A.; Gregg, Jeffrey; Solzak, Jeffrey P.; Chen, Yu-Hsiang; Bales, Casey L.; Cantor, Erica; Shen, Fei; Storniolo, Anna Maria V.; Badve, Sunil; Ballinger, Tarah J.; Chang, Chun-Li; Zhong, Yuan; Savran, Cagri; Miller, Kathy D.; Schneider, Bryan P.; Medical and Molecular Genetics, School of MedicineImportance: A significant proportion of patients with early-stage triple-negative breast cancer (TNBC) are treated with neoadjuvant chemotherapy. Sequencing of circulating tumor DNA (ctDNA) after surgery, along with enumeration of circulating tumor cells (CTCs), may be used to detect minimal residual disease and assess which patients may experience disease recurrence. Objective: To determine whether the presence of ctDNA and CTCs after neoadjuvant chemotherapy in patients with early-stage TNBC is independently associated with recurrence and clinical outcomes. Design, setting, and participants: A preplanned secondary analysis was conducted from March 26, 2014, to December 18, 2018, using data from 196 female patients in BRE12-158, a phase 2 multicenter randomized clinical trial that randomized patients with early-stage TNBC who had residual disease after neoadjuvant chemotherapy to receive postneoadjuvant genomically directed therapy vs treatment of physician choice. Patients had blood samples collected for ctDNA and CTCs at time of treatment assignment; ctDNA analysis with survival was performed for 142 patients, and CTC analysis with survival was performed for 123 patients. Median clinical follow-up was 17.2 months (range, 0.3-58.3 months). Interventions: Circulating tumor DNA was sequenced using the FoundationACT or FoundationOneLiquid Assay, and CTCs were enumerated using an epithelial cell adhesion molecule-based, positive-selection microfluidic device. Main outcomes and measures: Primary outcomes were distant disease-free survival (DDFS), disease-free survival (DFS), and overall survival (OS). Results: Among 196 female patients (mean [SD] age, 49.6 [11.1] years), detection of ctDNA was significantly associated with inferior DDFS (median DDFS, 32.5 months vs not reached; hazard ratio [HR], 2.99; 95% CI, 1.38-6.48; P = .006). At 24 months, DDFS probability was 56% for ctDNA-positive patients compared with 81% for ctDNA-negative patients. Detection of ctDNA was similarly associated with inferior DFS (HR, 2.67; 95% CI, 1.28-5.57; P = .009) and inferior OS (HR, 4.16; 95% CI,1.66-10.42; P = .002). The combination of ctDNA and CTCs provided additional information for increased sensitivity and discriminatory capacity. Patients who were ctDNA positive and CTC positive had significantly inferior DDFS compared with those who were ctDNA negative and CTC negative (median DDFS, 32.5 months vs not reached; HR, 5.29; 95% CI, 1.50-18.62; P = .009). At 24 months, DDFS probability was 52% for patients who were ctDNA positive and CTC positive compared with 89% for those who were ctDNA negative and CTC negative. Similar trends were observed for DFS (HR, 3.15; 95% CI, 1.07-9.27; P = .04) and OS (HR, 8.60; 95% CI, 1.78-41.47; P = .007). Conclusions and relevance: In this preplanned secondary analysis of a randomized clinical trial, detection of ctDNA and CTCs in patients with early-stage TNBC after neoadjuvant chemotherapy was independently associated with disease recurrence, which represents an important stratification factor for future postneoadjuvant trials.Item Author Correction: Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis(Springer Nature, 2024-06-17) Marino, Natascia; German, Rana; Rao, Xi; Simpson, Ed; Liu, Sheng; Wan, Jun; Liu, Yunlong; Sandusky, George; Jacobsen, Max; Stovall, Miranda; Cao, Sha; Storniolo, Anna Maria V.; Medicine, School of MedicineCorrection to: npj Breast Cancer 10.1038/s41523-020-00191-8, published online 06 October 2020 In this article, the author name Miranda Stovall was incorrectly written as Miranda Stoval. The original article has been corrected.Item Estimating breast tissue-specific DNA methylation age using next-generation sequencing data(Springer, 2020-03-12) Castle, James R.; Lin, Nan; Liu, Jinpeng; Storniolo, Anna Maria V.; Shendre, Aditi; Hou, Lifang; Horvath, Steve; Liu, Yunlong; Wang, Chi; He, Chunyan; Medical and Molecular Genetics, School of MedicineBackground DNA methylation (DNAm) age has been widely accepted as an epigenetic biomarker for biological aging. Emerging evidence suggests that DNAm age can be tissue-specific and female breast tissue ages faster than other parts of the body. The Horvath clock, which estimates DNAm age across multiple tissues, has been shown to be poorly calibrated in breast issue. We aim to develop a model to estimate breast tissue-specific DNAm age. Methods Genome-wide DNA methylation sequencing data were generated for 459 normal, 107 tumor, and 45 paired adjacent-normal breast tissue samples. We determined a novel set of 286 breast tissue-specific clock CpGs using penalized linear regression and developed a model to estimate breast tissue-specific DNAm age. The model was applied to estimate breast tissue-specific DNAm age in different breast tissue types and in tumors with distinct clinical characteristics to investigate cancer-related aging effects. Results Our estimated breast tissue-specific DNAm age was highly correlated with chronological age (r = 0.88; p = 2.9 × 10−31) in normal breast tissue. Breast tumor tissue samples exhibited a positive epigenetic age acceleration, where DNAm age was on average 7 years older than respective chronological age (p = 1.8 × 10−8). In age-matched analyses, tumor breast tissue appeared 12 and 13 years older in DNAm age than adjacent-normal and normal breast tissue (p = 4.0 × 10−6 and 1.0 × 10−6, respectively). Both HER2+ and hormone-receptor positive subtypes demonstrated significant acceleration in DNAm ages (p = 0.04 and 3.8 × 10−6, respectively), while no apparent DNAm age acceleration was observed for triple-negative breast tumors. We observed a non-linear pattern of epigenetic age acceleration with breast tumor grade. In addition, early-staged tumors showed a positive epigenetic age acceleration (p = 0.003) while late-staged tumors exhibited a non-significant negative epigenetic age acceleration (p = 0.10). Conclusions The intended applications for this model are wide-spread and have been shown to provide biologically meaningful results for cancer-related aging effects in breast tumor tissue. Future studies are warranted to explore whether breast tissue-specific epigenetic age acceleration is predictive of breast cancer development, treatment response, and survival as well as the clinical utility of whether this model can be extended to blood samples.Item Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated Breast Cancer via Estrogen Receptor and mTOR Signaling(AACR, 2019-05) Madak-Erdogan, Zeynep; Band, Shoham; Zhao, Yiru C.; Smith, Brandi P.; Kulkoyluoglu-Cotul, Eylem; Zuo, Qianying; Casiano, Ashlie Santaliz; Wrobel, Kinga; Rossi, Gianluigi; Smith, Rebecca L.; Kim, Sung Hoon; Katzenellenbogen, John A.; Johnson, Mariah L.; Patel, Meera; Marino, Natascia; Storniolo, Anna Maria V.; Flaws, Jodi A.; Medicine, School of MedicineObesity is a risk factor for postmenopausal estrogen receptor alpha (ERα)-positive (ER+) breast cancer. Molecular mechanisms underlying factors from plasma that contribute to this risk and how these mechanisms affect ERα signaling have yet to be elucidated. To identify such mechanisms, we performed whole metabolite and protein profiling in plasma samples from women at high risk for breast cancer, which led us to focus on factors that were differentially present in plasma of obese versus nonobese postmenopausal women. These studies, combined with in vitro assays, identified free fatty acids (FFA) as circulating plasma factors that correlated with increased proliferation and aggressiveness in ER+ breast cancer cells. FFAs activated both the ERα and mTOR pathways and rewired metabolism in breast cancer cells. Pathway preferential estrogen-1 (PaPE-1), which targets ERα and mTOR signaling, was able to block changes induced by FFA and was more effective in the presence of FFA. Collectively, these data suggest a role for obesity-associated gene and metabolic rewiring in providing new targetable vulnerabilities for ER+ breast cancer in postmenopausal women. Furthermore, they provide a basis for preclinical and clinical trials where the impact of agents that target ERα and mTOR signaling cross-talk would be tested to prevent ER+ breast cancers in obese postmenopausal women.Item Initial Phase I Safety Study of Gedatolisib plus Cofetuzumab Pelidotin for Patients with Metastatic Triple-Negative Breast Cancer(American Association for Cancer Research, 2022) Radovich, Milan; Solzak, Jeffrey P.; Wang, Chao J.; Hancock, Bradley A.; Badve, Sunil; Althouse, Sandra K.; Bray, Steven M.; Storniolo, Anna Maria V.; Ballinger, Tarah J.; Schneider, Bryan P.; Miller, Kathy D.; Surgery, School of MedicinePurpose: The PI3K pathway is dysregulated in the majority of triple-negative breast cancers (TNBC), yet single-agent inhibition of PI3K has been ineffective in TNBC. PI3K inhibition leads to an immediate compensatory upregulation of the Wnt pathway. Dual targeting of both pathways is highly synergistic against TNBC models in vitro and in vivo. We initiated a phase I clinical trial combining gedatolisib, a pan-class I isoform PI3K/mTOR inhibitor, and cofetuzumab pelidotin, an antibody-drug conjugate against the cell-surface PTK7 protein (Wnt pathway coreceptor) with an auristatin payload. Patients and methods: Participants (pt) had metastatic TNBC or estrogen receptor (ER) low (ER and PgR < 5%, HER2-negative) breast cancer, and had received at least one prior chemotherapy for advanced disease. The primary objective was safety. Secondary endpoints included overall response rate (ORR), clinical benefit at 18 weeks (CB18), progression-free survival (PFS), and correlative analyses. Results: A total of 18 pts were enrolled in three dose cohorts: gedatolisib 110 mg weekly + cofetuzumab pelidotin 1.4 mg/kg every 3 weeks (n = 4), 180 mg + 1.4 mg/kg (n = 3), and 180 mg + 2.8 mg/kg (n = 11). Nausea, anorexia, fatigue, and mucositis were common but rarely reached ≥grade 3 severity. Myelosuppression was uncommon. ORR was 16.7% (3/18). An additional 3 pts had stable disease (of these 2 had stable disease for >18 weeks); CB18 was 27.8%. Median PFS was 2.0 months (95% confidence interval for PFS: 1.2-6.2). Pts with clinical benefit were enriched with genomic alterations in the PI3K and PTK7 pathways. Conclusions: The combination of gedatolisib + cofetuzumab pelidotin was well tolerated and demonstrated promising clinical activity. Further investigation of this drug combination in metastatic TNBC is warranted.Item Metastatic breast cancer patients' expectations and priorities for symptom improvement(Springer Nature, 2018-11) Tometich, Danielle B.; Mosher, Catherine E.; Hirsh, Adam T.; Rand, Kevin L.; Johns, Shelley A.; Matthias, Marianne S.; Outcalt, Samantha D.; Schneider, Bryan P.; Mina, Lida; Storniolo, Anna Maria V.; Newton, Erin V.; Miller, Kathy D.; Psychology, School of SciencePURPOSE: Little research has examined cancer patients' expectations, goals, and priorities for symptom improvement. Thus, we examined these outcomes in metastatic breast cancer patients to provide patients' perspectives on clinically meaningful symptom improvement and priorities for symptom management. METHODS: Eighty women with metastatic breast cancer participated in a survey with measures of comorbidity, functional status, engagement in roles and activities, distress, quality of life, and the modified Patient-Centered Outcomes Questionnaire that focused on 10 common symptoms in cancer patients. RESULTS: On average, patients reported low to moderate severity across the 10 symptoms and expected symptom treatment to be successful. Patients indicated that a 49% reduction in fatigue, 48% reduction in thinking problems, and 43% reduction in sleep problems would represent successful symptom treatment. Cluster analysis based on ratings of the importance of symptom improvement yielded three clusters of patients: (1) those who rated thinking problems, sleep problems, and fatigue as highly important, (2) those who rated pain as moderately important, and (3) those who rated all symptoms as highly important. The first patient cluster differed from other subgroups in severity of thinking problems and education. CONCLUSIONS: Metastatic breast cancer patients report differing symptom treatment priorities and criteria for treatment success across symptoms. Considering cancer patients' perspectives on clinically meaningful symptom improvement and priorities for symptom management will ensure that treatment is consistent with their values and goals.Item Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank(Biomed Central, 2014) Pardo, Ivanesa; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, MiRan; Sauder, Candice A. M.; Doxey, Diane K.; Mathieson, Theresa; Hancock, Bradley A.; Baptiste, Dadrie; Atale, Rutuja; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Storniolo, Anna Maria V.; Zheng, Faye; Doerge, R. W.; Liu, Yunlong; Badve, Sunil S.; Radovich, Milan; Clare, Susan E.; Pathology and Laboratory Medicine, School of MedicineIntroduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.Item Tissue-specific Co-expression of Long Non-coding and Coding RNAs Associated with Breast Cancer(SpringerNature, 2016-09-06) Wu, Wenting; Wagner, Erin K.; Hao, Yangyang; Rao, Xi; Dai, Hongji; Han, Jiali; Chen, Jinhui; Storniolo, Anna Maria V.; Liu, Yunlong; He, Chunyan; Department of Epidemiology, Richard M. Fairbanks School of Public HealthInference of the biological roles of lncRNAs in breast cancer development remains a challenge. Here, we analyzed RNA-seq data in tumor and normal breast tissue samples from 18 breast cancer patients and 18 healthy controls and constructed a functional lncRNA-mRNA co-expression network. We revealed two distinctive co-expression patterns associated with breast cancer, reflecting different underlying regulatory mechanisms: (1) 516 pairs of lncRNA-mRNAs have differential co-expression pattern, in which the correlation between lncRNA and mRNA expression differs in tumor and normal breast tissue; (2) 291 pairs have dose-response co-expression pattern, in which the correlation is similar, but the expression level of lncRNA or mRNA differs in the two tissue types. We further validated our findings in TCGA dataset and annotated lncRNAs using TANRIC. One novel lncRNA, AC145110.1 on 8p12, was found differentially co-expressed with 127 mRNAs (including TOX4 and MAEL) in tumor and normal breast tissue and also highly correlated with breast cancer clinical outcomes. Functional enrichment and pathway analyses identified distinct biological functions for different patterns of co-expression regulations. Our data suggested that lncRNAs might be involved in breast tumorigenesis through the modulation of gene expression in multiple pathologic pathways.