- Browse by Author
Browsing by Author "Stewart, Robert B."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Behavioral profiling of multiple pairs of rats selectively bred for high and low alcohol intake using the MCSF test(Wiley, 2012-01) Roman, Erika; Stewart, Robert B.; Bertholomey, Megan L.; Jensen, Meredith L.; Colombo, Giancarlo; Hyytiä, Petri; Badia-Elder, Nancy E.; Grahame, Nicholas J.; Li, Ting-Kai; Lumeng, Lawrence; Psychology, School of ScienceGenetic aspects of alcoholism have been modeled using rats selectively bred for extremes of alcohol preference and voluntary alcohol intake. These lines show similar alcohol drinking phenotypes but have different genetic and environmental backgrounds and may therefore display diverse behavioral traits as seen in human alcoholics. The multivariate concentric square field™ (MCSF) test is designed to provoke exploration and behaviors associated with risk assessment, risk taking and shelter seeking in a novel environment. The aim was to use the MCSF to characterize behavioral profiles in rat lines from selective breeding programs in the United States (P/NP, HAD1/LAD1, HAD2/LAD2), Italy (sP/sNP) and Finland (AA/ANA). The open field and elevated plus maze tests were used as reference tests. There were substantial differences within some of the pairs of selectively bred rat lines as well as between all alcohol-preferring rats. The most pronounced differences within the pairs of lines were between AA and ANA rats and between sP and sNP rats followed by intermediate differences between P and NP rats and minor differences comparing HAD and LAD rats. Among all preferring lines, P, HAD1 and HAD2 rats shared similar behavioral profiles, while AA and sP rats were quite different from each other and the others. No single trait appeared to form a common 'pathway' associated with a high alcohol drinking phenotype among all of the alcohol-preferring lines of rats. The marked behavioral differences found in the different alcohol-preferring lines may mimic the heterogeneity observed among human alcoholic subtypes.Item Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight(Elsevier, 2019-03) Qiu, Bin; Xu, Yuxue; Wang, Jun; Liu, Ming; Dou, Longyu; Deng, Ran; Wang, Chao; Williams, Kent E.; Stewart, Robert B.; Xie, Zhongwen; Ren, Wei; Zhao, Zhenwen; Shou, Weinian; Liang, Tiebing; Yong, Weidong; Medicine, School of MedicineFKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) mice was observed when compared to WT mice, which correlated with changes to the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs was decreased in KO hippocampus, indicating a decrease in excitatory synaptic activity. While no differences were found in levels of glutamate between KO and WT, a reduction was observed in the expression of excitatory glutamate receptors (NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The expression of the inhibitory neurotransmitter GABA was found to be enhanced in Fkbp5 KO hippocampus. Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development.Item The neurobiology of alcoholism in genetically selected rat models(The National Institute on Alcohol Abuse and Alcoholism, 1997) Stewart, Robert B.; Li, Ting-Kai; Psychology, School of ScienceRats selectively bred for their tendency to drink large or small quantities of alcohol are a useful model for investigators examining the possible neurobiological processes underlying alcoholism. Studies with the alcohol-preferring (P) and alcohol-nonpreferring (NP) and the high-alcohol-drinking (HAD) and low-alcohol-drinking (LAD) pairs of rat lines developed at Indiana University have illustrated differences in several behavioral and neurobiological characteristics associated with alcohol consumption. Specifically, compared with alcohol-avoiding rats, rats with an affinity for alcohol have a greater sensitivity to the stimulatory effects of low to moderate doses and a reduced sensitivity to the negative effects of high doses. Rats that voluntarily drink large quantities of alcohol also acquire tolerance to alcohol’s aversive effects. In addition, these rats differ from their alcohol-avoiding counterparts in the levels of several chemical mediators (i.e., neurotransmitters) found in the brain, including serotonin, dopamine, gamma-aminobutyric acid (GABA), and the endogenous opioids.Item Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight.(Elsevier, 2016-07-20) Qiu, Bin; Bell, Richard L.; Cao, Yong; Zhang, Lingling; Stewart, Robert B.; Graves, Tamara; Lumeng, Lawrence; Yong, Weidong; Liang, Tiebing; Department of Psychiatry, IU School of MedicineNeuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in a