- Browse by Author
Browsing by Author "Stanciu, Lia A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item An Aqueous Media Based Approach for the Preparation of a Biosensor Platform Composed of Graphene Oxide and Pt-Black(Elsevier, 2012) Shi, Jin; Zhang, Hangyu; Snyder, Alexandra; Wang, Mei-xian; Xie, Jian; Porterfield, D. Marshall; Stanciu, Lia A.; Mechanical and Energy Engineering, Purdue School of Engineering and TechnologyThe combination of Pt nanoparticles and graphene was more effective in enhancing biosensing than either nanomaterial alone according to previous reports. Based on the structural similarities between water soluble graphene oxide (GrO(x)) and graphene, we report the fabrication of an aqueous media based GrO(x)/Pt-black nanocomposite for biosensing enhancement. In this approach GrO(x) acted as a nanoscale molecular template for the electrodeposition of Pt-black, an amorphously nanopatterned isoform of platinum metal. Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) showed that Pt-black was growing along GrO(x). The effective surface area and electrocatalytic activity towards H(2)O(2) oxidation of GrO(x)/Pt-black microelectrodes were significantly higher than for Pt-black microelectrodes. When used to prepare a bio-nanocomposite based on protein functionalization with the enzyme glucose oxidase (GOx), the GrO(x)/Pt-black microbiosensors exhibited improved sensitivity over the Pt-black microbiosensors. This suggested that the GrO(x)/Pt-black nanocomposite facilitated an increase in electron transfer, and/or minimized mass transport limitations as compared to Pt-black used alone. Glucose microbiosensors based on GrO(x)/Pt-black exhibited high sensitivity (465.9 ± 48.0 nA/mM), a low detection limit of 1 μM, a linear response range of 1 μM-2mM, and response time of ≈ 4s. Additionally the sensor was stable and highly selective over potential interferents.Item Polybenzimidazole (PBI) Functionalized Nanographene as Highly Stable Catalyst Support for Polymer Electrolyte Membrane Fuel Cells (PEMFCs)(ECS, 2016) Xin, Le; Yang, Fan; Qiu, Yang; Uzunoglu, Aytekin; Rockward, Tommy; Borup, Rodney L.; Stanciu, Lia A.; Li, Wenzhen; Xie, Jian; Department of Mechanical Engineering, School of Engineering and TechnologyNanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume of the secondary pores and greatly improves O2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. This study suggests the promise of using PBI-nanographene + SO3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.