- Browse by Author
Browsing by Author "Stamatkin, Christopher W."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A Dose-escalation Study of Recombinant Human Interleukin-18 in Combination With Ofatumumab After Autologous Peripheral Blood Stem Cell Transplantation for Lymphoma(Wolters Kluwer, 2018-04) Robertson, Michael J.; Stamatkin, Christopher W.; Pelloso, David; Weisenbach, Jill; Prasad, Nagendra K.; Safa, Ahmad R.; Medicine, School of MedicineInterleukin-18 (IL-18) is an immunostimulatory cytokine that augments antibody-dependent cellular cytotoxicity mediated by human natural killer cells against antibody-coated lymphoma cells in vitro and that has antitumor activity in animal models. Ofatumumab is a CD20 monoclonal antibody with activity against human B-cell lymphomas. A phase I study of recombinant human (rh) IL-18 given with ofatumumab was undertaken in patients with CD20 lymphoma who had undergone high-dose chemotherapy and autologous peripheral blood stem cell transplantation. Cohorts of 3 patients were given intravenous infusions of ofatumumab 1000 mg weekly for 4 weeks with escalating doses of rhIL-18 as a intravenous infusion weekly for 8 consecutive weeks. Nine male patients with CD20 lymphomas were given ofatumumab in combination with rhIL-18 at doses of 3, 10, and 30 μg/kg. No unexpected or dose-limiting toxicities were observed. The mean reduction from predose levels in the number of peripheral blood natural killer cells after the first rhIL-18 infusion was 91%, 96%, and 97% for the 3, 10, and 30 μg/kg cohorts, respectively. Serum concentrations of interferon-γ and chemokines transiently increased following IL-18 dosing. rhIL-18 can be given in biologically active doses by weekly infusions in combination with ofatumumab after peripheral blood stem cell transplantation to patients with lymphoma. A maximum tolerated dose of rhIL-18 plus ofatumumab was not determined. Further studies of rhIL-18 and CD20 monoclonal antibodies in B-cell malignancies are warranted.Item Molecular Determinants of the Sensitivity to Gq/11-Phospholipase C-dependent Gating, Gd3+ Potentiation, and Ca2+ Permeability in the Transient Receptor Potential Canonical Type 5 (TRPC5) Channel(American Society for Biochemistry and Molecular Biology, 2017-01-20) Chen, Xingjuan; Li, Wennan; Riley, Ashley M.; Soliman, Mario; Chakraborty, Saikat Chakrabort; Stamatkin, Christopher W.; Obukhov, Alexander G.; Cellular and Integrative Physiology, School of MedicineTransient receptor potential canonical type 5 (TRPC5) is a Ca2+-permeable cation channel that is highly expressed in the brain and is implicated in motor coordination, innate fear behavior, and seizure genesis. The channel is activated by a signal downstream of the G-protein-coupled receptor (GPCR)-Gq/11-phospholipase C (PLC) pathway. In this study we aimed to identify the molecular mechanisms involved in regulating TRPC5 activity. We report that Arg-593, a residue located in the E4 loop near the TRPC5 extracellular Gd3+ binding site, is critical for conferring the sensitivity to GPCR-Gq/11-PLC-dependent gating on TRPC5. Indeed, guanosine 5'-O-(thiotriphosphate) and GPCR agonists only weakly activate the TRPC5R593A mutant, whereas the addition of Gd3+ rescues the mutant's sensitivity to GPCR-Gq/11-PLC-dependent gating. Computer modeling suggests that Arg-593 may cross-bridge the E3 and E4 loops, forming the "molecular fulcrum." While validating the model using site-directed mutagenesis, we found that the Tyr-542 residue is critical for establishing a functional Gd3+ binding site, the Tyr-541 residue participates in fine-tuning Gd3+-sensitivity, and that the Asn-584 residue determines Ca2+ permeability of the TRPC5 channel. This is the first report providing molecular insights into the molecular mechanisms regulating the sensitivity to GPCR-Gq/11-PLC-dependent gating of a receptor-operated channel.Item Phenylephrine, a common cold remedy active ingredient, suppresses uterine contractions through cAMP signalling(Springer Nature, 2018-08-03) Chen, Xingjuan; Meroueh, Marya; Mazur, Gabriela; Rouse, Evan; Hundal, Karmjot Singh; Stamatkin, Christopher W.; Obukhov, Alexander G.; Cellular and Integrative Physiology, School of MedicineRegulation of uterine contractility is an important aspect of women's health. Phenylephrine, a selective agonist of the α1-adrenoceptor and a potent smooth muscle constrictor, is widely used in women even during pregnancy to relieve cold-related symptoms, to treat postpartum haemorrhoid, and during routine eye exams. We performed isometric tension recordings to investigate the effect of phenylephrine on mouse uterine contractility. Phenylephrine decreased spontaneous and oxytocin-induced contractions in non-pregnant mouse uterine rings and strips with an IC50 of ~1 μM. Prazosin, an inhibitor of α1-adrenoceptor, did not prevent phenylephrine-mediated relaxations. Conversely, ICI118551, an antagonist of β2-adrenoceptors, inhibited phenylephrine relaxation. In the presence of ICI118551, high concentrations (>30 μM) of phenylephrine caused mouse uterine contractions, suggesting that β-adrenoceptor-mediated inhibition interferes with the phenylephrine contractile potential. Phenylephrine-dependent relaxation was reduced in the uterus of pregnant mice. We used primary mouse and human uterine smooth muscle cells (M/HUSMC) to establish the underlying mechanisms. Phenylephrine stimulated large increases in intracellular cAMP in M/HUSMCs. These cAMP transients were decreased when HUSMCs were cultured in the presence of oestrogen and progesterone to mimic the pregnancy milieu. Thus, phenylephrine is a strong relaxant in the non-pregnant mouse uterus, but exhibits diminished effect in the pregnant uterus.Item The Role of MDM2 in Promoting Genome Stability versus Instability(MDPI, 2017-10-23) Saadatzadeh, M. Reza; Elmi, Adily N.; Pandya, Pankita H.; Bijangi-Vishehsaraei, Khadijeh; Ding, Jixin; Stamatkin, Christopher W.; Cohen-Gadol, Aaron A.; Pollok, Karen E.; Pediatrics, School of MedicineIn cancer, the mouse double minute 2 (MDM2) is an oncoprotein that contributes to the promotion of cell growth, survival, invasion, and therapeutic resistance. The impact of MDM2 on cell survival versus cell death is complex and dependent on levels of MDM2 isoforms, p53 status, and cellular context. Extensive investigations have demonstrated that MDM2 protein–protein interactions with p53 and other p53 family members (p63 and p73) block their ability to function as transcription factors that regulate cell growth and survival. Upon genotoxic insults, a dynamic and intricately regulated DNA damage response circuitry is activated leading to release of p53 from MDM2 and activation of cell cycle arrest. What ensues following DNA damage, depends on the extent of DNA damage and if the cell has sufficient DNA repair capacity. The well-known auto-regulatory loop between p53-MDM2 provides an additional layer of control as the cell either repairs DNA damage and survives (i.e., MDM2 re-engages with p53), or undergoes cell death (i.e., MDM2 does not re-engage p53). Furthermore, the decision to live or die is also influenced by chromatin-localized MDM2 which directly interacts with the Mre11-Rad50-Nbs1 complex and inhibits DNA damage-sensing giving rise to the potential for increased genome instability and cellular transformation.Item Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking(National Academy of Sciences, 2018-11-06) Chen, Xingjuan; Liu, Degang; Zhou, Donghui; Si, Yubing; Xu, David; Stamatkin, Christopher W.; Ghozayel, Mona K.; Ripsch, Matthew S.; Obukhov, Alexander G.; White, Fletcher A.; Meroueh, Samy O.; Cellular and Integrative Physiology, School of MedicineExtracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and β subunits. The high-affinity CaV2.2α1⋅CaVβ3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVβ3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVβ3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking.