- Browse by Author
Browsing by Author "Staffaroni, Adam M."
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item A framework for translating tauopathy therapeutics: Drug discovery to clinical trials(Wiley, 2024) Feldman, Howard H.; Cummings, Jeffrey L.; Boxer, Adam L.; Staffaroni, Adam M.; Knopman, David S.; Sukoff Rizzo, Stacey J.; Territo, Paul R.; Arnold, Steven E.; Ballard, Clive; Beher, Dirk; Boeve, Bradley F.; Dacks, Penny A.; Diaz, Kristophe; Ewen, Colin; Fiske, Brian; Gonzalez, M. Isabel; Harris, Glenn A.; Hoffman, Beth J.; Martinez, Terina N.; McDade, Eric; Nisenbaum, Laura K.; Palma, Jose-Alberto; Quintana, Melanie; Rabinovici, Gil D.; Rohrer, Jonathan D.; Rosen, Howard J.; Troyer, Matthew D.; Kim, Doo Yeon; Tanzi, Rudolph E.; Zetterberg, Henrik; Ziogas, Nick K.; May, Patrick C.; Rommel, Amy; Medicine, School of MedicineThe tauopathies are defined by pathological tau protein aggregates within a spectrum of clinically heterogeneous neurodegenerative diseases. The primary tauopathies meet the definition of rare diseases in the United States. There is no approved treatment for primary tauopathies. In this context, designing the most efficient development programs to translate promising targets and treatments from preclinical studies to early-phase clinical trials is vital. In September 2022, the Rainwater Charitable Foundation convened an international expert workshop focused on the translation of tauopathy therapeutics through early-phase trials. Our report on the workshop recommends a framework for principled drug development and a companion lexicon to facilitate communication focusing on reproducibility and achieving common elements. Topics include the selection of targets, drugs, biomarkers, participants, and study designs. The maturation of pharmacodynamic biomarkers to demonstrate target engagement and surrogate disease biomarkers is a crucial unmet need. HIGHLIGHTS: Experts provided a framework to translate therapeutics (discovery to clinical trials). Experts focused on the "5 Rights" (target, drug, biomarker, participants, trial). Current research on frontotemporal degeneration, progressive supranuclear palsy, and corticobasal syndrome therapeutics includes 32 trials (37% on biologics) Tau therapeutics are being tested in Alzheimer's disease; primary tauopathies have a large unmet need.Item A harmonized memory composite score for cross‐cohort Alzheimer’s disease and related dementia research: development and validation(Wiley, 2025-01-03) Sanderson-Cimino, Mark E.; Gross, Alden L.; Gaynor, Leslie S.; Paolillo, Emily W.; Casaletto, Kaitlin B.; Chatterjee, Ankita; Albert, Marilyn S.; Apostolova, Liana G.; Boersema, Brooke; Boxer, Adam L.; Boeve, Brad F.; Clark, Lindsay R.; La Joie, Renaud; Eloyan, Ani; Tomaszewski Farias, Sarah; Gonzales, Mitzi M.; Hammers, Dustin B.; Wise, Amy B.; Cobigo, Yann; Yballa, Claire; Schonhaut, Daniel R.; Hampstead, Benjamin M.; Mechanic-Hamilton, Dawn; Miller, Bruce L.; Rabinovici, Gil D.; Rascovsky, Katya; Ringman, John M.; Rosen, Howard J.; Ryman, Sephira; Salmon, David P.; Smith, Glenn E.; Decarli, Charles; Kramer, Joel H.; Staffaroni, Adam M.; Neurology, School of MedicineBackground: The Uniform Data Set (UDS) neuropsychological battery, administered across Alzheimer’s Disease Centers (ADC), includes memory tests but lacks a list‐learning paradigm. ADCs often supplement the UDS with their own preferred list‐learning task. Given the importance of list‐learning for characterizing memory, we aimed to develop a harmonized memory score that incorporates UDS memory tests while allowing centers to contribute differing list‐learning tasks. Method: We applied item‐banking confirmatory factor analysis to develop a composite memory score in 5,287 participants (mean age 67.1; SD = 12.2) recruited through 18 ADCs and four consortia (DiverseVCID, MarkVCID, ALLFTD, LEADS) who completed UDS memory tasks (used as linking‐items) and one of five list‐learning tasks. All analyses used linear regression. We tested whether memory scores were affected by which list‐learning task was administered. To assess construct validity, we tested associations of memory scores with demographics, disease severity (CDR Box Score), an independent memory task (TabCAT Favorites, n = 675), and hippocampal volume (n = 811). We compared performances between cognitively unimpaired (n = 279), AD‐biomarker+ MCI (n = 26), and AD‐biomarker+ dementia (n = 98). In a subsample with amyloid‐ and tau‐PET (n = 49), we compared memory scores from participants with positive vs negative scans determined using established quantitative cutoffs. Result: Model fit indices were excellent (e.g., CFI = 0.998) and factor loadings were strong (0.43‐0.93). Differences in list‐learning task had a negligible effect on scores (average Cohen’s d = 0.11). Higher memory scores were significantly (p’s<.001) correlated with younger age (β = ‐0.18), lower CDR Box Scores (β = ‐0.63), female sex (β = 0.12), higher education (β = 0.19), larger hippocampal volume (β = 0.42), and an independent memory task (β = 0.71, p<0.001). The memory composite declined in a stepwise fashion by diagnosis (cognitively unimpaired>MCI>AD dementia, p<0.001). On average, amyloid‐PET positivity was associated with lower composite scores, but was not statistically significant (β = ‐0.34; p = 0.25; d = 0.40). Tau‐PET positivity was associated with worse performance, demonstrating a large effect size (β = ‐0.75; p<0.002; d = 0.91). Conclusion: The harmonized memory score developed in a large national sample was stable regardless of contributing list‐learning task and its validity for cross‐cohort ADRD research is supported by expected associations with demographics, clinical measures, and Alzheimer’s biomarkers. A processing script will be made available to enhance cross‐cohort ADRD research.Item Brain volumetric deficits in MAPT mutation carriers: a multisite study(Wiley, 2021) Chu, Stephanie A.; Flagan, Taru M.; Staffaroni, Adam M.; Jiskoot, Lize C.; Deng, Jersey; Spina, Salvatore; Zhang, Liwen; Sturm, Virginia E.; Yokoyama, Jennifer S.; Seeley, William W.; Papma, Janne M.; Geschwind, Dan H.; Rosen, Howard J.; Boeve, Bradley F.; Boxer, Adam L.; Heuer, Hilary W.; Forsberg, Leah K.; Brushaber, Danielle E.; Grossman, Murray; Coppola, Giovanni; Dickerson, Bradford C.; Bordelon, Yvette M.; Faber, Kelley; Feldman, Howard H.; Fields, Julie A.; Fong, Jamie C.; Foroud, Tatiana; Gavrilova, Ralitza H.; Ghoshal, Nupur; Graff-Radford, Neill R.; Hsiung, Ging-Yuek Robin; Huey, Edward D.; Irwin, David J.; Kantarci, Kejal; Kaufer, Daniel I.; Karydas, Anna M.; Knopman, David S.; Kornak, John; Kramer, Joel H.; Kukull, Walter A.; Lapid, Maria I.; Litvan, Irene; Mackenzie, Ian R. A.; Mendez, Mario F.; Miller, Bruce L.; Onyike, Chiadi U.; Pantelyat, Alexander Y.; Rademakers, Rosa; Ramos, Eliana Marisa; Roberson, Erik D.; Tartaglia, Maria Carmela; Tatton, Nadine A.; Toga, Arthur W.; Vetor, Ashley; Weintraub, Sandra; Wong, Bonnie; Wszolek, Zbigniew K.; ARTFL/LEFFTDS Consortium; Van Swieten, John C.; Lee, Suzee E.; Medical and Molecular Genetics, School of MedicineObjective: MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. Methods: We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. Results: Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers. Interpretation: A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.Item Clinical and neuropathological associations of plasma Aβ42/Aβ40, p‐tau217 and neurofilament light in sporadic frontotemporal dementia spectrum disorders(Wiley, 2025-01-29) Rajbanshi, Binita; Araujo, Igor Prufer Q. C.; VandeVrede, Lawren; Ljubenkov, Peter A.; Staffaroni, Adam M.; Heuer, Hilary W.; Lago, Argentina Lario; Ramos, Eliana Marisa; Petrucelli, Leonard; Gendron, Tania; Dage, Jeffrey L.; Seeley, William W.; Grinberg, Lea T.; Spina, Salvatore; Bateman, Randall J.; Rosen, Howard J.; Boeve, Bradley F.; Boxer, Adam L.; Rojas, Julio C.; ALLFTD Consortium; Neurology, School of MedicineIntroduction: Plasma amyloid beta42/amyloid beta40 (Aβ42/Aβ40) and phosphorylated tau217 (p-tau217) identify individuals with primary Alzheimer's disease (AD). They may detect AD co-pathology in the setting of other primary neurodegenerative diseases, but this has not been systematically studied. Methods: We compared the clinical, neuroimaging, and neuropathological associations of plasma Aβ42/Aβ40 (mass spectrometry), p-tau217 (electrochemiluminescence), and neurofilament light ([NfL], single molecule array [Simoa]), as markers of AD co-pathology, in a sporadic frontotemporal dementia (FTD) cohort (n = 620). Results: Aβ42/Aβ40 showed no clinicopathological associations. High p-tau217 was present in amnestic dementia (AmD) presumed to be due to FTD, logopenic primary progressive aphasia (lvPPA), and APOEε4 carriers, and correlated with worse baseline and longitudinal clinical scores, lower hippocampal volumes, and more severe AD co-pathology (Braak Stage). NfL was elevated in all FTD phenotypes, and correlated with clinical scores and frontotemporal brain volumes. Discussion: Plasma p-tau217 has clinical, neuroimaging, and neuropathological correlates in sporadic FTD and may identify FTD cases with AD co-pathology. Highlights: Alzheimer's disease (AD) features could be identified with plasma phosphorylated tau217 (p-tau217) in frontotemporal lobar degeneration (FTLD).Plasma p-tau217 is a better discriminator of AD co-pathology and AD-associated features in FTLD than plasma amyloid beta42/amyloid beta40 (Aβ42/Aβ40) and neurofilament light (NfL).In FTLD, plasma p-tau217, but not Aβ42/Aβ40 or neurofilament light, has phenotypical, neurocognitive, and neuroimaging correlates suggestive of AD co-pathology.Item Development and validation of a harmonized memory score for multicenter Alzheimer's disease and related dementia research(medRxiv, 2025-04-03) Sanderson-Cimino, Mark; Gross, Alden L.; Gaynor, Leslie S.; Paolillo, Emily W.; Saloner, Rowan; Albert, Marilyn S.; Apostolova, Liana G.; Boersema, Brooke; Boxer, Adam L.; Boeve, Bradley F.; Casaletto, Kaitlin B.; Hallgarth, Savannah R.; Diaz, Valentina E.; Clark, Lindsay R.; Maillard, Pauline; Eloyan, Ani; Tomaszewski Farias, Sarah; Gonzales, Mitzi M.; Hammers, Dustin B.; La Joie, Renaud; Cobigo, Yann; Wolf, Amy; Hampstead, Benjamin M.; Mechanic-Hamilton, Dawn; Miller, Bruce L.; Rabinovici, Gil D.; Ringman, John M.; Rosen, Howie J.; Ryman, Sephira G.; Prestopnik, Jillian L.; Salmon, David P.; Smith, Glenn E.; DeCarli, Charles; Rajan, Kumar B.; Jin, Lee-Way; Hinman, Jason; Johnson, David K.; Harvey, Danielle; Fornage, Myriam; Kramer, Joel H.; Staffaroni, Adam M.; Neurology, School of MedicineIntroduction: List-learning tasks are important for characterizing memory in ADRD research, but the Uniform Data Set neuropsychological battery (UDS-NB) lacks a list-learning paradigm; thus, sites administer a range of tests. We developed a harmonized memory composite that incorporates UDS memory tests and multiple list-learning tasks. Methods: Item-banking confirmatory factor analysis was applied to develop a memory composite in a diagnostically heterogenous sample (n=5943) who completed the UDS-NB and one of five list-learning tasks. Construct validity was evaluated through associations with demographics, disease severity, cognitive tasks, brain volume, and plasma phosphorylated tau (p-tau181 and p-tau217). Test-retest reliability was assessed. Analyses were replicated in a racially/ethnically diverse cohort (n=1058). Results: Fit indices, loadings, distributions, and test-retest reliability were adequate. Expected associations with demographics and clinical measures within development and validation cohorts supported validity. Discussion: This composite enables researchers to incorporate multiple list-learning tasks with other UDS measures to create a single metric.Item Evaluation of Plasma Phosphorylated Tau217 for Differentiation Between Alzheimer Disease and Frontotemporal Lobar Degeneration Subtypes Among Patients With Corticobasal Syndrome(American Medical Association, 2023) VandeVrede, Lawren; La Joie, Renaud; Thijssen, Elisabeth H.; Asken, Breton M.; Vento, Stephanie A.; Tsuei, Torie; Baker, Suzanne L.; Cobigo, Yann; Fonseca, Corrina; Heuer, Hilary W.; Kramer, Joel H.; Ljubenkov, Peter A.; Rabinovici, Gil D.; Rojas, Julio C.; Rosen, Howie J.; Staffaroni, Adam M.; Boeve, Brad F.; Dickerson, Brad C.; Grossman, Murray; Huey, Edward D.; Irwin, David J.; Litvan, Irene; Pantelyat, Alexander Y.; Tartaglia, Maria Carmela; Dage, Jeffrey L.; Boxer, Adam L.; Neurology, School of MedicineImportance: Plasma phosphorylated tau217 (p-tau217), a biomarker of Alzheimer disease (AD), is of special interest in corticobasal syndrome (CBS) because autopsy studies have revealed AD is the driving neuropathology in up to 40% of cases. This differentiates CBS from other 4-repeat tauopathy (4RT)-associated syndromes, such as progressive supranuclear palsy Richardson syndrome (PSP-RS) and nonfluent primary progressive aphasia (nfvPPA), where underlying frontotemporal lobar degeneration (FTLD) is typically the primary neuropathology. Objective: To validate plasma p-tau217 against positron emission tomography (PET) in 4RT-associated syndromes, especially CBS. Design, setting, and participants: This multicohort study with 6, 12, and 24-month follow-up recruited adult participants between January 2011 and September 2020 from 8 tertiary care centers in the 4RT Neuroimaging Initiative (4RTNI). All participants with CBS (n = 113), PSP-RS (n = 121), and nfvPPA (n = 39) were included; other diagnoses were excluded due to rarity (n = 29). Individuals with PET-confirmed AD (n = 54) and PET-negative cognitively normal control individuals (n = 59) were evaluated at University of California San Francisco. Operators were blinded to the cohort. Main outcome and measures: Plasma p-tau217, measured by Meso Scale Discovery electrochemiluminescence, was validated against amyloid-β (Aβ) and flortaucipir (FTP) PET. Imaging analyses used voxel-based morphometry and bayesian linear mixed-effects modeling. Clinical biomarker associations were evaluated using longitudinal mixed-effect modeling. Results: Of 386 participants, 199 (52%) were female, and the mean (SD) age was 68 (8) years. Plasma p-tau217 was elevated in patients with CBS with positive Aβ PET results (mean [SD], 0.57 [0.43] pg/mL) or FTP PET (mean [SD], 0.75 [0.30] pg/mL) to concentrations comparable to control individuals with AD (mean [SD], 0.72 [0.37]), whereas PSP-RS and nfvPPA showed no increase relative to control. Within CBS, p-tau217 had excellent diagnostic performance with area under the receiver operating characteristic curve (AUC) for Aβ PET of 0.87 (95% CI, 0.76-0.98; P < .001) and FTP PET of 0.93 (95% CI, 0.83-1.00; P < .001). At baseline, individuals with CBS-AD (n = 12), defined by a PET-validated plasma p-tau217 cutoff 0.25 pg/mL or greater, had increased temporoparietal atrophy at baseline compared to individuals with CBS-FTLD (n = 39), whereas longitudinally, individuals with CBS-FTLD had faster brainstem atrophy rates. Individuals with CBS-FTLD also progressed more rapidly on a modified version of the PSP Rating Scale than those with CBS-AD (mean [SD], 3.5 [0.5] vs 0.8 [0.8] points/year; P = .005). Conclusions and relevance: In this cohort study, plasma p-tau217 had excellent diagnostic performance for identifying Aβ or FTP PET positivity within CBS with likely underlying AD pathology. Plasma P-tau217 may be a useful and inexpensive biomarker to select patients for CBS clinical trials.Item Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease(Wiley, 2021-07-05) Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng-Yang M.; Wolf, Amy; Allen, Isabel Elaine; Salloway, Stephen; Chhatwal, Jasmeer; Brickman, Adam M.; Reyes-Dumeyer, Dolly; Bateman, Randal J.; Benzinger, Tammie L.S.; Morris, John C.; Ances, Beau M.; Joseph-Mathurin, Nelly; Perrin, Richard J.; Gordon, Brian A.; Levin, Johannes; Vöglein, Jonathan; Jucker, Mathias; la Fougère, Christian; Martins, Ralph N.; Sohrabi, Hamid R.; Taddei, Kevin; Villemagne, Victor L.; Schofield, Peter R.; Brooks, William S.; Fulham, Michael; Masters, Colin L.; Ghetti, Bernardino; Saykin, Andrew J.; Jack, Clifford R.; Graff-Radford, Neill R.; Weiner, Michael; Cash, David M.; Allegri, Ricardo F.; Chrem, Patricio; Yi, Su; Miller, Bruce L.; Rabinovici, Gil D.; Rosen, Howard J.; Pathology and Laboratory Medicine, School of MedicineIntroduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.Item Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration(American Academy of Neurology, 2021-05-04) Rojas, Julio C.; Wang, Ping; Staffaroni, Adam M.; Heller, Carolin; Cobigo, Yann; Wolf, Amy; Goh, Sheng-Yang M.; Ljubenkov, Peter A.; Heuer, Hilary W.; Fong, Jamie C.; Taylor, Joanne B.; Veras, Eliseo; Song, Linan; Jeromin, Andreas; Hanlon, David; Yu, Lili; Khinikar, Arvind; Sivasankaran, Rajeev; Kieloch, Agnieszka; Valentin, Marie-Anne; Karydas, Anna M.; Mitic, Laura L.; Pearlman, Rodney; Kornak, John; Kramer, Joel H.; Miller, Bruce L.; Kantarci, Kejal; Knopman, David S.; Graff-Radford, Neill; Petrucelli, Leonard; Rademakers, Rosa; Irwin, David J.; Grossman, Murray; Ramos, Eliana Marisa; Coppola, Giovanni; Mendez, Mario F.; Bordelon, Yvette; Dickerson, Bradford C.; Ghoshal, Nupur; Huey, Edward D.; Mackenzie, Ian R.; Appleby, Brian S.; Domoto-Reilly, Kimiko; Hsiung, Ging-Yuek R.; Toga, Arthur W.; Weintraub, Sandra; Kaufer, Daniel I.; Kerwin, Diana; Litvan, Irene; Onyike, Chiadikaobi U.; Pantelyat, Alexander; Roberson, Erik D.; Tartaglia, Maria C.; Foroud, Tatiana; Chen, Weiping; Czerkowicz, Julie; Graham, Danielle L.; van Swieten, John C.; Borroni, Barbara; Sanchez-Valle, Raquel; Moreno, Fermin; Laforce, Robert; Graff, Caroline; Synofzik, Matthis; Galimberti, Daniela; Rowe, James B.; James B., Mario; Finger, Elizabeth; Vandenberghe, Rik; de Mendonça, Alexandre; Tagliavini, Fabrizio; Santana, Isabel; Ducharme, Simon; Butler, Chris R.; Gerhard, Alexander; Levin, Johannes; Danek, Adrian; Otto, Markus; Sorbi, Sandro; Cash, David M.; Convery, Rhian S.; Bocchetta, Martina; Foiani, Martha; Greaves, Caroline V.; Peakman, Georgia; Russell, Lucy; Swift, Imogen; Todd, Emily; Rohrer, Jonathan D.; Boeve, Bradley F.; Rosen, Howard J.; Boxer, Adam L.; Neurology, School of MedicineObjective: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. Methods: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. Results: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. Conclusions: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. Trial registration information: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. Classification of evidence: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.Item Proposed research criteria for prodromal behavioural variant frontotemporal dementia(Oxford University Press, 2022) Barker, Megan S.; Gottesman, Reena T.; Manoochehri, Masood; Chapman, Silvia; Appleby, Brian S.; Brushaber, Danielle; Devick, Katrina L.; Dickerson, Bradford C.; Domoto-Reilly, Kimiko; Fields, Julie A.; Forsberg, Leah K.; Galasko, Douglas R.; Ghoshal, Nupur; Goldman, Jill; Graff-Radford, Neill R.; Grossman, Murray; Heuer, Hilary W.; Hsiung, Ging-Yuek; Knopman, David S.; Kornak, John; Litvan, Irene; Mackenzie, Ian R.; Masdeu, Joseph C.; Mendez, Mario F.; Pascual, Belen; Staffaroni, Adam M.; Tartaglia, Maria Carmela; Boeve, Bradley F.; Boxer, Adam L.; Rosen, Howard J.; Rankin, Katherine P.; Cosentino, Stephanie; Rascovsky, Katya; Huey, Edward D.; ALLFTD Consortium; Neurology, School of MedicineAt present, no research criteria exist for the diagnosis of prodromal behavioural variant frontotemporal dementia (bvFTD), though early detection is of high research importance. Thus, we sought to develop and validate a proposed set of research criteria for prodromal bvFTD, termed 'mild behavioural and/or cognitive impairment in bvFTD' (MBCI-FTD). Participants included 72 participants deemed to have prodromal bvFTD; this comprised 55 carriers of a pathogenic mutation known to cause frontotemporal lobar degeneration, and 17 individuals with autopsy-confirmed frontotemporal lobar degeneration. All had mild behavioural and/or cognitive changes, as judged by an evaluating clinician. Based on extensive clinical workup, the prodromal bvFTD group was divided into a Development Group (n = 22) and a Validation Group (n = 50). The Development Group was selected to be the subset of the prodromal bvFTD group for whom we had the strongest longitudinal evidence of conversion to bvFTD, and was used to develop the MBCI-FTD criteria. The Validation Group was the remainder of the prodromal bvFTD group and was used as a separate sample on which to validate the criteria. Familial non-carriers were included as healthy controls (n = 165). The frequencies of behavioural and neuropsychiatric features, neuropsychological deficits, and social cognitive dysfunction in the prodromal bvFTD Development Group and healthy controls were assessed. Based on sensitivity and specificity analyses, seven core features were identified: apathy without moderate-severe dysphoria, behavioural disinhibition, irritability/agitation, reduced empathy/sympathy, repetitive behaviours (simple and/or complex), joviality/gregariousness, and appetite changes/hyperorality. Supportive features include a neuropsychological profile of impaired executive function or naming with intact orientation and visuospatial skills, reduced insight for cognitive or behavioural changes, and poor social cognition. Three core features or two core features plus one supportive feature are required for the diagnosis of possible MBCI-FTD; probable MBCI-FTD requires imaging or biomarker evidence, or a pathogenic genetic mutation. The proposed MBCI-FTD criteria correctly classified 95% of the prodromal bvFTD Development Group, and 74% of the prodromal bvFTD Validation Group, with a false positive rate of <10% in healthy controls. Finally, the MBCI-FTD criteria were tested on a cohort of individuals with prodromal Alzheimer's disease, and the false positive rate of diagnosis was 11-16%. Future research will need to refine the sensitivity and specificity of these criteria, and incorporate emerging biomarker evidence.Item Recognition memory and divergent cognitive profiles in prodromal genetic frontotemporal dementia(Elsevier, 2021) Barker, Megan S.; Manoochehri, Masood; Rizer, Sandra J.; Appleby, Brian S.; Brushaber, Danielle; Dev, Sheena I.; Devick, Katrina L.; Dickerson, Bradford C.; Fields, Julie A.; Foroud, Tatiana M.; Forsberg, Leah K.; Galasko, Douglas R.; Ghoshal, Nupur; Graff-Radford, Neill R.; Grossman, Murray; Heuer, Hilary W.; Hsiung, Ging-Yuek; Kornak, John; Litvan, Irene; Mackenzie, Ian R.; Mendez, Mario F.; Pascual, Belen; Rankin, Katherine P.; Rascovsky, Katya; Staffaroni, Adam M.; Tartaglia, Maria Carmela; Weintraub, Sandra; Wong, Bonnie; Boeve, Bradley F.; Boxer, Adam L.; Rosen, Howard J.; Goldman, Jill; Huey, Edward D.; Cosentino, Stephanie; ALLFTD consortium; Medical and Molecular Genetics, School of MedicineAlthough executive dysfunction is the characteristic cognitive marker of behavioral variant frontotemporal dementia (bvFTD), episodic memory deficits are relatively common, and may be present even during the prodromal disease phase. In a cohort of mutation carriers with mild behavioral and/or cognitive symptoms consistent with prodromal bvFTD, we aimed to investigate patterns of performance on an abbreviated list learning task, with a particular focus on recognition memory. We further aimed to characterize the cognitive prodromes associated with the three major genetic causes of frontotemporal dementia, as emerging evidence suggests there may be subtle differences in cognitive profiles among carriers of different genetic mutations. Participants included 57 carriers of a pathogenic mutation in microtubule-associated protein tau (MAPT, N = 23), or progranulin (GRN, N = 15), or a or a hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72, N = 19), with mild cognitive and/or behavioral symptoms consistent with prodromal bvFTD. Familial non-carriers were included as controls (N = 143). All participants completed a comprehensive neuropsychological examination, including an abbreviated list learning test assessing episodic memory recall and recognition. MAPT mutation carriers performed worse than non-carriers in terms of list recall, and had difficulty discriminating targets from distractors on the recognition memory task, primarily due to the endorsement of distractors as targets. MAPT mutation carriers also showed nonverbal episodic memory and semantic memory dysfunction (object naming). GRN mutation carriers were variable in performance and overall the most dysexecutive. Slowed psychomotor speed was evident in C9orf72 repeat expansion carriers. Identifying the earliest cognitive indicators of bvFTD is of critical clinical and research importance. List learning may be a sensitive cognitive marker for incipient dementia in MAPT and potentially a subset of GRN carriers. Our results highlight that distinct cognitive profiles may be evident in carriers of the three disease-causing genes during the prodromal disease stage.