- Browse by Author
Browsing by Author "Ssenkusu, John M."
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Acute kidney injury in Ugandan children with severe malaria is associated with long-term behavioral problems(Public Library of Science, 2019-12-17) Hickson, Meredith R.; Conroy, Andrea L.; Bangirana, Paul; Opoka, Robert O.; Idro, Richard; Ssenkusu, John M.; John, Chandy C.; Pediatrics, School of MedicineBackground Acute kidney injury (AKI) is a risk factor for neurocognitive impairment in severe malaria (SM), but the impact of AKI on long-term behavioral outcomes following SM is unknown. Methods We conducted a prospective study on behavioral outcomes of Ugandan children 1.5 to 12 years of age with two forms of severe malaria, cerebral malaria (CM, n = 226) or severe malarial anemia (SMA, n = 214), and healthy community children (CC, n = 173). AKI was defined as a 50% increase in creatinine from estimated baseline. Behavior and executive function were assessed at baseline and 6, 12, and 24 months later using the Child Behavior Checklist and Behavior Rating Inventory of Executive Function, respectively. Age-adjusted z-scores were computed for each domain based on CC scores. The association between AKI and behavioral outcomes was evaluated across all time points using linear mixed effect models, adjusting for sociodemographic variables and disease severity. Results AKI was present in 33.2% of children with CM or SMA at baseline. Children ≥6 years of age with CM or SMA who had AKI on admission had worse scores in socio-emotional function in externalizing behaviors (Beta (95% CI), 0.52 (0.20, 0.85), p = 0.001), global executive function (0.48 (0.15, 0.82), p = 0.005) and behavioral regulation (0.66 (0.32, 1.01), p = 0.0002) than children without AKI. There were no behavioral differences associated with AKI in children <6 years of age. Conclusions AKI is associated with long-term behavioral problems in children ≥6 years of age with CM or SMA, irrespective of age at study enrollment.Item Acute kidney injury is associated with impaired cognition and chronic kidney disease in a prospective cohort of children with severe malaria(Springer Nature, 2019-05-21) Conroy, Andrea L.; Opoka, Robert O.; Bangirana, Paul; Idro, Richard; Ssenkusu, John M.; Datta, Dibyadyuti; Hodges, James S.; Morgan, Catherine; John, Chandy C.; Pediatrics, School of MedicineBACKGROUND: Acute kidney injury (AKI) is a recognized complication of pediatric severe malaria, but its long-term consequences are unknown. METHODS: Ugandan children with cerebral malaria (CM, n = 260) and severe malaria anemia (SMA, n = 219) or community children (CC, n = 173) between 1.5 and 12 years of age were enrolled in a prospective cohort study. Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to retrospectively define AKI and chronic kidney disease (CKD). Cognitive testing was conducted using the Mullen Scales of Early Learning in children < 5 and Kaufman Assessment Battery for Children (K-ABC) second edition in children ≥ 5 years of age. RESULTS: The prevalence of AKI was 35.1%, ranging from 25.1% in SMA to 43.5% in CM. In-hospital mortality was 11.9% in AKI compared to 4.2% in children without AKI (p = 0.001), and post-discharge mortality was 4.7% in AKI compared to 1.3% in children without AKI (p = 0.030) corresponding to an all-cause adjusted hazard ratio of 2.30 (95% CI 1.21, 4.35). AKI was a risk factor for short- and long-term neurocognitive impairment. At 1 week post-discharge, the frequency of neurocognitive impairment was 37.3% in AKI compared to 13.5% in children without AKI (adjusted odds ratio (aOR) 2.31 [95% CI 1.32, 4.04]); at 1-year follow-up, it was 13.3% in AKI compared to 3.4% in children without AKI (aOR 2.48 [95% CI 1.01, 6.10]), and at 2-year follow-up, it was 13.0% in AKI compared to 3.4% in children without AKI (aOR 3.03 [95% CI 1.22, 7.58]). AKI was a risk factor for CKD at 1-year follow-up: 7.6% of children with severe malaria-associated AKI had CKD at follow-up compared to 2.8% of children without AKI (p = 0.038) corresponding to an OR of 2.81 (95% CI 1.02, 7.73). The presenting etiology of AKI was consistent with prerenal azotemia, and lactate dehydrogenase as a marker of intravascular hemolysis was an independent risk factor for AKI in CM and SMA (p < 0.0001). In CM, AKI was associated with the presence and severity of retinopathy (p < 0.05) and increased cerebrospinal fluid albumin suggestive of blood-brain barrier disruption. CONCLUSIONS: AKI is a risk factor for long-term neurocognitive impairment and CKD in pediatric severe malaria.Item Acute kidney injury, persistent kidney disease, and post-discharge morbidity and mortality in severe malaria in children: A prospective cohort study(Elsevier, 2022-02-12) Namazzi, Ruth; Batte, Anthony; Opoka, Robert O.; Bangirana, Paul; Schwaderer, Andrew L.; Berrens, Zachary; Datta, Dibyadyuti; Goings, Michael; Ssenkusu, John M.; Goldstein, Stuart L.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground: Globally, 85% of acute kidney injury (AKI) cases occur in low-and-middle-income countries. There is limited information on persistent kidney disease (acute kidney disease [AKD]) following severe malaria-associated AKI. Methods: Between March 28, 2014, and April 18, 2017, 598 children with severe malaria and 118 community children were enrolled in a two-site prospective cohort study in Uganda and followed up for 12 months. The Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to define AKI (primary exposure) and AKD at 1-month follow-up (primary outcome). Plasma neutrophil gelatinase-associated lipocalin (NGAL) was assessed as a structural biomarker of AKI. Findings: The prevalence of AKI was 45·3% with 21·5% of children having unresolved AKI at 24 h. AKI was more common in Eastern Uganda. In-hospital mortality increased across AKI stages from 1·8% in children without AKI to 26·5% with Stage 3 AKI (p < 0·0001). Children with a high-risk plasma NGAL test were more likely to have unresolved AKI (OR, 7·00 95% CI 4·16 to 11·76) and die in hospital (OR, 6·02 95% CI 2·83 to 12·81). AKD prevalence was 15·6% at 1-month follow-up with most AKD occurring in Eastern Uganda. Risk factors for AKD included severe/unresolved AKI, blackwater fever, and a high-risk NGAL test (adjusted p < 0·05). Paracetamol use during hospitalization was associated with reduced AKD (p < 0·0001). Survivors with AKD post-AKI had higher post-discharge mortality (17·5%) compared with children without AKD (3·7%). Interpretation: Children with severe malaria-associated AKI are at risk of AKD and post-discharge mortality.Item Delayed iron does not alter cognition or behavior among children with severe malaria and iron deficiency(Nature, 2020-09) Ssemata, Andrew S.; Hickson, Meredith; Ssenkusu, John M.; Cusick, Sarah E.; Nakasujja, Noeline; Opoka, Robert O.; Kroupina, Maria; Georgieff, Michael K.; Bangirana, Paul; John, Chandy C.; Pediatrics, School of MedicineBACKGROUND: Malaria and iron deficiency (ID) in childhood are both associated with cognitive and behavioral dysfunction. The current standard of care for children with malaria and ID is concurrent antimalarial and iron therapy. Delaying iron therapy until inflammation subsides could increase iron absorption but also impair cognition. METHODS: In this study, Ugandan children 18 months to 5 years old with cerebral malaria (CM, n = 79), severe malarial anemia (SMA, n = 77), or community children (CC, n = 83) were enrolled and tested for ID. Children with ID were randomized to immediate vs. 28-day delayed iron therapy. Cognitive and neurobehavioral outcomes were assessed at baseline and 6 and 12 months (primary endpoint) after enrollment. RESULTS: All children with CM or SMA and 35 CC had ID (zinc protoporphyrin concentration ≥80 μmol/mol heme). No significant differences were seen at 12-month follow-up in overall cognitive ability, attention, associative memory, or behavioral outcomes between immediate and delayed iron treatment (mean difference (standard error of mean) ranged from -0.2 (0.39) to 0.98 (0.5), all P ≥ 0.06). CONCLUSIONS: Children with CM or SMA and ID who received immediate vs. delayed iron therapy had similar cognitive and neurobehavioral outcomes at 12-month follow-up. IMPACT: The optimal time to provide iron therapy in children with severe malaria is not known. The present study shows that delay of iron treatment to 28 days after the malaria episode, does not lead to worse cognitive or behavioral outcomes at 12-month follow-up. The study contributes new data to the ongoing discussion of how best to treat ID in children with severe malaria.Item Endothelial Activation, Acute Kidney Injury, and Cognitive Impairment in Pediatric Severe Malaria(Wolters Kluwer, 2020-09) Ouma, Benson J.; Ssenkusu, John M.; Shabani, Estela; Datta, Dibyadyuti; Opoka, Robert O.; Idro, Richard; Bangirana, Paul; Park, Gregory; Joloba, Moses L.; Kain, Kevin C.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineObjectives: Evaluate the relationship between endothelial activation, malaria complications, and long-term cognitive outcomes in severe malaria survivors. Design: Prospectively cohort study of children with cerebral malaria, severe malarial anemia, or community children. Setting: Mulago National Referral Hospital in Kampala, Uganda. Subjects: Children 18 months to 12 years old with severe malaria (cerebral malaria, n = 253 or severe malarial anemia, n = 211) or community children (n = 206) were followed for 24 months. Interventions: None. Measurements and main results: Children underwent neurocognitive evaluation at enrollment (community children) or a week following hospital discharge (severe malaria) and 6, 12, and 24 months follow-up. Endothelial activation was assessed at admission on plasma samples (von Willebrand factor, angiopoietin-1 and angiopoietin-2, soluble intercellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, soluble E-Selectin, and P-Selectin). False discovery rate was used to adjust for multiple comparisons. Severe malaria was associated with widespread endothelial activation compared with community children (p < 0.0001 for all markers). Acute kidney injury was independently associated with changes in von Willebrand factor, soluble intercellular adhesion molecule-1, soluble E-Selectin, P-Selectin, and angiopoietin-2 (p < 0.0001 for all). A log10 increase in angiopoietin-2 was associated with lower cognitive z scores across age groups (children < 5, β -0.42, 95% CI, -0.69 to -0.15, p = 0.002; children ≥ 5, β -0.39, 95% CI, -0.67 to -0.11, p = 0.007) independent of disease severity (coma, number of seizures, acute kidney injury) and sociodemographic factors. Angiopoietin-2 was associated with hemolysis (lactate dehydrogenase, total bilirubin) and inflammation (tumor necrosis factor-α, interleukin-10). In children with cerebral malaria who had a lumbar puncture performed, angiopoietin-2 was associated with blood-brain barrier dysfunction, and markers of neuroinflammation and injury in the cerebrospinal fluid (tumor necrosis factor-α, kynurenic acid, tau). Conclusions: These data support angiopoietin-2 as a measure of disease severity and a risk factor for long-term cognitive injury in children with severe malaria.Item Evaluating kidney function using a point-of-care creatinine test in Ugandan children with severe malaria: a prospective cohort study(BMC, 2021-11-06) Batte, Anthony; Murphy, Kristin J.; Namazzi, Ruth; Co, Katrina; Opoka, Robert O.; Ssenkusu, John M.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground: Acute kidney injury (AKI) disproportionately affects individuals in low-and middle-income countries (LMIC). However, LMIC-particularly countries in sub-Saharan Africa- are under-represented in global AKI research. A critical barrier in diagnosing AKI is access to reliable serum creatinine results. We evaluated the utility of a point-of-care test to measure creatinine and diagnose AKI in Ugandan children with malaria. Methods: Paired admission creatinine was assessed in 539 Ugandan children 6 months to 4 years of age hospitalized with severe malaria based on blood smear or rapid diagnostic test. Creatinine levels were measured using isotope dilution mass spectrometry (IDMS)-traceable methods. The reference creatinine was measured using the modified Jaffe method by a certified laboratory and the point-of-care testing was conducted using an i-STAT blood analyzer (i-STAT1, with and without adjustment for the partial pressure of carbon dioxide). AKI was defined and staged using the Kidney Disease: Improving Global Outcomes criteria. Results: The mean age of children was 2.1 years, and 21.6% of children were stunted. Mortality was 7.6% in-hospital. Over the entire range of measured creatinine values (<0.20mg/dL-8.4mg/dL), the correlation between the reference creatinine and adjusted and unadjusted point-of-care creatinine was high with R2 values of 0.95 and 0.93 respectively; however, the correlation was significantly lower in children with creatinine values <1mg/dL (R2 of 0.44 between the reference and adjusted and unadjusted i-STAT creatinine). The prevalence of AKI was 45.5% using the reference creatinine, and 27.1 and 32.3% using the unadjusted and adjusted point-of-care creatinine values, respectively. There was a step-wise increase in mortality across AKI stages, and all methods were strongly associated with mortality (p<0.0001 for all). AKI defined using the reference creatinine measure was the most sensitive to predict mortality with a sensitivity of 85.4% compared to 70.7 and 63.4% with the adjusted and unadjusted point-of-care creatinine values, respectively. Conclusions: Point-of-care assessment of creatinine in lean Ugandan children <4 years of age underestimated creatinine and AKI compared to the clinical reference. Additional studies are needed to evaluate other biomarkers of AKI in LMIC to ensure equitable access to AKI diagnostics globally.Item Methods to estimate baseline creatinine and define acute kidney injury in lean Ugandan children with severe malaria: a prospective cohort study(BMC, 2020-09-29) Batte, Anthony; Starr, Michelle C.; Schwaderer, Andrew L.; Opoka, Robert O.; Namazzi, Ruth; Phelps Nishiguchi, Erika S.; Ssenkusu, John M.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground Acute kidney injury (AKI) is increasingly recognized as a consequential clinical complication in children with severe malaria. However, approaches to estimate baseline creatinine (bSCr) are not standardized in this unique patient population. Prior to wide-spread utilization, bSCr estimation methods need to be evaluated in many populations, particularly in children from low-income countries. Methods We evaluated six methods to estimate bSCr in Ugandan children aged 6 months to 12 years of age in two cohorts of children with severe malaria (n = 1078) and healthy community children (n = 289). Using isotope dilution mass spectrometry (IDMS)-traceable creatinine measures from community children, we evaluated the bias, accuracy and precision of estimating bSCr using height-dependent and height-independent estimated glomerular filtration (eGFR) equations to back-calculate bSCr or estimating bSCr directly using published or population-specific norms. Results We compared methods to estimate bSCr in healthy community children against the IDMS-traceable SCr measure. The Pottel-age based equation, assuming a normal GFR of 120 mL/min per 1.73m2, was the more accurate method with minimal bias when compared to the Schwartz height-based equation. Using the different bSCr estimates, we demonstrated the prevalence of KDIGO-defined AKI in children with severe malaria ranged from 15.6–43.4%. The lowest estimate was derived using population upper levels of normal and the highest estimate was derived using the mean GFR of the community children (137 mL/min per 1.73m2) to back-calculate the bSCr. Irrespective of approach, AKI was strongly associated with mortality with a step-wise increase in mortality across AKI stages (p < 0.0001 for all). AKI defined using the Pottel-age based equation to estimate bSCr showed the strongest relationship with mortality with a risk ratio of 5.13 (95% CI 3.03–8.68) adjusting for child age and sex. Conclusions We recommend using height-independent age-based approaches to estimate bSCr in hospitalized children in sub-Saharan Africa due to challenges in accurate height measurements and undernutrition which may impact bSCr estimates. In this population the Pottel-age based GFR estimating equation obtained comparable bSCr estimates to population-based estimates in healthy children.Item Neutrophil gelatinase-associated lipocalin is elevated in children with acute kidney injury and sickle cell anemia, and predicts mortality(Elsevier, 2022) Batte, Anthony; Menon, Sahit; Ssenkusu, John M.; Kiguli, Sarah; Kalyesubula, Robert; Lubega, Joseph; Berrens, Zachary; Mutebi, Edrisa Ibrahim; Ogwang, Rodney; Opoka, Robert O.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineUrine neutrophil gelatinase-associated lipocalin (NGAL) is a biomarker of acute kidney injury that has been adapted to a urine dipstick test. However, there is limited data on its use in low- and-middle-income countries where diagnosis of acute kidney injury remains a challenge. To study this, we prospectively enrolled 250 children with sickle cell anemia aged two to 18 years encompassing 185 children hospitalized with a vaso-occlusive pain crisis and a reference group of 65 children attending the sickle cell clinic for routine care follow up. Kidney injury was defined using serial creatinine measures and a modified-Kidney Disease Improving Global Outcome definition for sickle cell anemia. Urine NGAL was measured using the NGAL dipstick and a laboratory reference. The mean age of children enrolled was 8.9 years and 42.8% were female. Among hospitalized children, 36.2% had kidney injury and 3.2% died. Measured urine NGAL levels by the dipstick were strongly correlated with the standard enzyme-linked immunosorbent assay for urine NGAL (hospitalized children, 0.71; routine care reference, 0.88). NGAL levels were elevated in kidney injury and significantly increased across injury stages. Hospitalized children with a high-risk dipstick test (300ng/mL and more) had a 2.47-fold relative risk of kidney injury (95% confidence interval 1.68 to 3.61) and 7.28 increased risk of death (95% confidence interval 1.10 to 26.81) adjusting for age and sex. Thus, urine NGAL levels were found to be significantly elevated in children with sickle cell anemia and acute kidney injury and may predict mortality.Item Parenteral artemisinins are associated with reduced mortality and neurologic deficits and improved long-term behavioral outcomes in children with severe malaria(BMC, 2021-07-28) Conroy, Andrea L.; Opoka, Robert O.; Bangirana, Paul; Namazzi, Ruth; Okullo, Allen E.; Georgieff, Michael K.; Cusick, Sarah; Idro, Richard; Ssenkusu, John M.; John, Chandy C.; Pediatrics, School of MedicineBackground: In 2011, the World Health Organization recommended injectable artesunate as the first-line therapy for severe malaria (SM) due to its superiority in reducing mortality compared to quinine. There are limited data on long-term clinical and neurobehavioral outcomes after artemisinin use for treatment of SM. Methods: From 2008 to 2013, 502 Ugandan children with two common forms of SM, cerebral malaria and severe malarial anemia, were enrolled in a prospective observational study assessing long-term neurobehavioral and cognitive outcomes following SM. Children were evaluated a week after hospital discharge, and 6, 12, and 24 months of follow-up, and returned to hospital for any illness. In this study, we evaluated the impact of artemisinin derivatives on survival, post-discharge hospital readmission or death, and neurocognitive and behavioral outcomes over 2 years of follow-up. Results: 346 children received quinine and 156 received parenteral artemisinin therapy (artemether or artesunate). After adjustment for disease severity, artemisinin derivatives were associated with a 78% reduction in in-hospital mortality (adjusted odds ratio, 0.22; 95% CI, 0.07-0.67). Among cerebral malaria survivors, children treated with artemisinin derivatives also had reduced neurologic deficits at discharge (quinine, 41.7%; artemisinin derivatives, 23.7%, p=0.007). Over a 2-year follow-up, artemisinin derivatives as compared to quinine were associated with better adjusted scores (negative scores better) in internalizing behavior and executive function in children irrespective of the age at severe malaria episode. After adjusting for multiple comparisons, artemisinin derivatives were associated with better adjusted scores in behavior and executive function in children <6 years of age at severe malaria exposure following adjustment for child age, sex, socioeconomic status, enrichment in the home environment, and the incidence of hospitalizations over follow-up. Children receiving artesunate had the greatest reduction in mortality and benefit in behavioral outcomes and had reduced inflammation at 1-month follow-up compared to children treated with quinine. Conclusions: Treatment of severe malaria with artemisinin derivatives, particularly artesunate, results in reduced in-hospital mortality and neurologic deficits in children of all ages, reduced inflammation following recovery, and better long-term behavioral outcomes. These findings suggest artesunate has long-term beneficial effects in children surviving severe malaria.Item Plasma Amino Acid Concentrations in Children With Severe Malaria Are Associated With Mortality and Worse Long-term Kidney and Cognitive Outcomes(Oxford University Press, 2022) Conroy, Andrea L.; Tran, Tuan M.; Bond, Caitlin; Opoka, Robert O.; Datta, Dibyadyuti; Liechty, Edward A.; Bangirana, Paul; Namazzi, Ruth; Idro, Richard; Cusick, Sarah; Ssenkusu, John M.; John, Chandy C.; Pediatrics, School of MedicineBackground: Global changes in amino acid levels have been described in severe malaria (SM), but the relationship between amino acids and long-term outcomes in SM has not been evaluated. Methods: We measured enrollment plasma concentrations of 20 amino acids using high-performance liquid chromatography in 500 Ugandan children aged 18 months to 12 years, including 122 community children and 378 children with SM. The Kidney Disease: Improving Global Outcomes criteria were used to define acute kidney injury (AKI) at enrollment and chronic kidney disease (CKD) at 1-year follow-up. Cognition was assessed over 2 years of follow-up. Results: Compared to laboratory-defined, age-specific reference ranges, there were deficiencies in sulfur-containing amino acids (methionine, cysteine) in both community children and children with SM. Among children with SM, global changes in amino acid concentrations were observed in the context of metabolic complications including acidosis and AKI. Increases in threonine, leucine, and valine were associated with in-hospital mortality, while increases in methionine, tyrosine, lysine, and phenylalanine were associated with postdischarge mortality and CKD. Increases in glycine and asparagine were associated with worse attention in children <5 years of age. Conclusions: Among children with SM, unique amino acid profiles are associated with mortality, CKD, and worse attention.