- Browse by Author
Browsing by Author "Spillantini, Maria Grazia"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein(Society for Neuroscience, 2002-11) Allen, Bridget; Ingram, Esther; Takao, Masaki; Smith, Michael J.; Jakes, Ross; Virdee, Kanwar; Yoshida, Hirotaka; Holzer, Max; Craxton, Molly; Emson, Piers C.; Atzori, Cristiana; Migheli, Antonio; Crowther, R. Anthony; Ghetti, Bernardino; Spillantini, Maria Grazia; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineThe identification of mutations in the Tau gene in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has made it possible to express human tau protein with pathogenic mutations in transgenic animals. Here we report on the production and characterization of a line of mice transgenic for the 383 aa isoform of human tau with the P301S mutation. At 5-6 months of age, homozygous animals from this line developed a neurological phenotype dominated by a severe paraparesis. According to light microscopy, many nerve cells in brain and spinal cord were strongly immunoreactive for hyperphosphorylated tau. According to electron microscopy, abundant filaments made of hyperphosphorylated tau protein were present. The majority of filaments resembled the half-twisted ribbons described previously in cases of FTDP-17, with a minority of filaments resembling the paired helical filaments of Alzheimer's disease. Sarkosyl-insoluble tau from brains and spinal cords of transgenic mice ran as a hyperphosphorylated 64 kDa band, the same apparent molecular mass as that of the 383 aa tau isoform in the human tauopathies. Perchloric acid-soluble tau was also phosphorylated at many sites, with the notable exception of serine 214. In the spinal cord, neurodegeneration was present, as indicated by a 49% reduction in the number of motor neurons. No evidence for apoptosis was obtained, despite the extensive colocalization of hyperphosphorylated tau protein with activated MAP kinase family members. The latter may be involved in the hyperphosphorylation of tau.Item Age-dependent formation of TMEM106B amyloid filaments in human brains(Springer Nature, 2022) Schweighauser, Manuel; Arseni, Diana; Bacioglu, Mehtap; Huang, Melissa; Lövestam, Sofia; Shi, Yang; Yang, Yang; Zhang, Wenjuan; Kotecha, Abhay; Garringer, Holly J.; Vidal, Ruben; Hallinan, Grace I.; Newell, Kathy L.; Tarutani, Airi; Murayama, Shigeo; Miyazaki, Masayuki; Saito, Yuko; Yoshida, Mari; Hasegawa, Kazuko; Lashley, Tammaryn; Revesz, Tamas; Kovacs, Gabor G.; van Swieten, John; Takao, Masaki; Hasegawa, Masato; Ghetti, Bernardino; Spillantini, Maria Grazia; Ryskeldi-Falcon, Benjamin; Murzin, Alexey G.; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineMany age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-β, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-β amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.Item Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17: A New Group of Tauopathies(Wiley, 1998-04) Spillantini, Maria Grazia; Bird, Thomas D.; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineFrontotemporal dementia is a neurological disorder characterised by personality changes, deterioration of memory and executive functions as well as stereotypical behaviour. Sometimes a Parkinsonian syndrome is prominent. Several cases of frontotemporal dementia are hereditary and recently families have been identified where the disease is linked to chromosome 17q21-22. Although, there is clinical and neuropathological variability among and within families, they all consistently present a symptomathology that has led investigators to name the disease "Frontotemporal Dementia and Parkinsonism linked to chromosome 17." Neuropathologically, these patients present with atrophy of frontal and temporal cortex as well as of basal ganglia and substantia nigra. In the majority of cases these features are accompanied by neuronal loss, gliosis and microtubule-associated protein tau deposits which can be present in both neurones and glial cells. The distribution, structural and biochemical characteristics of the tau deposits differentiate them from those present in Alzheimer's disease, corticobasal degeneration, progressive supranuclear palsy and Pick's disease. No beta-amyloid deposits are present. The clinical and neuropathological features of the disease in these families suggest that Frontotemporal Dementia and Parkinsonism linked to chromosome 17 is a distinct disorder. The presence of abundant tau deposits in the majority of these families define this disorder as a new tauopathy.Item TMEM106B amyloid filaments in the Biondi bodies of ependymal cells(Springer, 2024-11-06) Ghetti, Bernardino; Schweighauser, Manuel; Jacobsen, Max H.; Gray, Derrick; Bacioglu, Mehtap; Murzin, Alexey G.; Glazier, Bradley S.; Katsinelos, Taxiarchis; Vidal, Ruben; Newell, Kathy L.; Gao, Sujuan; Garringer, Holly J.; Spillantini, Maria Grazia; Scheres, Sjors H. W.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineBiondi bodies are filamentous amyloid inclusions of unknown composition in ependymal cells of the choroid plexuses, ependymal cells lining cerebral ventricles and ependymal cells of the central canal of the spinal cord. Their formation is age-dependent and they are commonly associated with a variety of neurodegenerative conditions, including Alzheimer's disease and Lewy body disorders. Here, we show that Biondi bodies are strongly immunoreactive with TMEM239, an antibody specific for inclusions of transmembrane protein 106B (TMEM106B). Biondi bodies were labelled by both this antibody and the amyloid dye pFTAA. Many Biondi bodies were also labelled for TMEM106B and the lysosomal markers Hexosaminidase A and Cathepsin D. By transmission immuno-electron microscopy, Biondi bodies of choroid plexuses were decorated by TMEM239 and were associated with structures that resembled residual bodies or secondary lysosomes. By electron cryo-microscopy, TMEM106B filaments from Biondi bodies of choroid plexuses were similar (Biondi variant), but not identical, to the fold I that was previously identified in filaments from brain parenchyma.