- Browse by Author
Browsing by Author "Shi, Riyi"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat(Wiley, 2014-03) Due, Michael R.; Park, Jonghyuck; Zheng, Lingxing; Walls, Michael; Allette, Yohance M.; White, Fletcher A.; Shi, Riyi; Department of Anesthesia, IU School of MedicineGrowing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1-dependent mechanism. Here we report that there are enhanced levels of acrolein and increased neuronal sensitivity to the aldehyde for at least 14 days after SCI. Concurrent with injury-induced increases in acrolein concentration is an increased expression of TRPA1 in the lumbar (L3-L6) sensory ganglia. As proof of the potential pronociceptive role for acrolein, intrathecal injections of acrolein revealed enhanced sensitivity to both tactile and thermal stimuli for up to 10 days, supporting the compound’s pro-nociceptive functionality. Treatment of SCI animals with the acrolein scavenger hydralazine produced moderate improvement in tactile responses as well as robust changes in thermal sensitivity for up to 49 days. Taken together, these data suggests that acrolein directly modulates SCI-associated pain behavior, making it a novel therapeutic target for preclinical and clinical SCI as an analgesic.Item Automatic Detection and Characterization of Autonomic Dysreflexia Using Multi-Modal Non-Invasive Sensing and Neural Networks(Mary Ann Liebert, 2022-11-10) Suresh, Shruthi; Everett, Thomas H., IV; Shi, Riyi; Duerstock, Bradley S.; Medicine, School of MedicineAutonomic dysreflexia (AD) frequently occurs in persons with spinal cord injuries (SCIs) above the T6 level triggered by different stimuli below the level of injury. If improperly managed, AD can have severe clinical consequences, even possibly leading to death. Existing techniques for AD detection are time-consuming, obtrusive, lack automated detection capabilities, and have low temporal resolution. Therefore, a non-invasive, multi-modal wearable diagnostic tool was developed to quantitatively characterize and distinguish unique signatures of AD. Electrocardiography and novel skin nerve activity (skNA) sensors with neural networks were used to detect temporal changes in the sympathetic and vagal systems in rats with SCI. Clinically established metrics of AD were used to verify the onset of AD. Five physiological features reflecting different metrics of sympathetic and vagal activity were used to characterize signatures of AD. An increase in sympathetic activity, followed by a lagged increase in vagal activity during the onset of AD, was observed after inducing AD. This unique signature response was used to train a neural network to detect the onset of AD with an accuracy of 93.4%. The model also had a 79% accuracy in distinguishing between sympathetic hyperactivity reactions attributable to different sympathetic stressors above and below the level of injury. These neural networks have not been used in previous work to detect the onset of AD. The system could serve as a complementary non-invasive tool to the clinically accepted gold standard, allowing an improved management of AD in persons with SCI.Item Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations(Nature Publishing Group, 2018-07-06) Garcia-Gonzalez, Daniel; Race, Nicholas S.; Voets, Natalie L.; Jenkins, Damian R.; Sotiropoulos, Stamatios N.; Acosta, Glen; Cruz-Haces, Marcela; Tang, Jonathan; Shi, Riyi; Jérusalem, Antoine; Medicine, School of MedicineBlast-induced traumatic brain injury has been associated with neurodegenerative and neuropsychiatric disorders. To date, although damage due to oxidative stress appears to be important, the specific mechanistic causes of such disorders remain elusive. Here, to determine the mechanical variables governing the tissue damage eventually cascading into cognitive deficits, we performed a study on the mechanics of rat brain under blast conditions. To this end, experiments were carried out to analyse and correlate post-injury oxidative stress distribution with cognitive deficits on a live rat exposed to blast. A computational model of the rat head was developed from imaging data and validated against in vivo brain displacement measurements. The blast event was reconstructed in silico to provide mechanistic thresholds that best correlate with cognitive damage at the regional neuronal tissue level, irrespectively of the shape or size of the brain tissue types. This approach was leveraged on a human head model where the prediction of cognitive deficits was shown to correlate with literature findings. The mechanistic insights from this work were finally used to propose a novel protective device design roadmap and potential avenues for therapeutic innovations against blast traumatic brain injury.Item A Compact Blast-Induced Traumatic Brain Injury Model in Mice(Oxford University Press, 2016-02) Wang, Hongxing; Zhang, Yi Ping; Cai, Jun; Shields, Lisa B. E.; Tuchek, Chad A.; Shi, Riyi; Li, Jianan; Shields, Christopher B.; Xu, Xiao-Ming; Neurological Surgery, School of MedicineBlast-induced traumatic brain injury (bTBI) is a common injury on the battlefield and often results in permanent cognitive and neurological abnormalities. We report a novel compact device that creates graded bTBI in mice. The injury severity can be controlled by precise pressures that mimic Friedlander shockwave curves. The mouse head was stabilized with a head fixator, and the body was protected with a metal shield; shockwave durations were 3 to 4 milliseconds. Reflective shockwave peak readings at the position of the mouse head were 12 6 2.6 psi, 50 6 20.3 psi, and 100 6 33.1 psi at 100, 200, and 250 psi predetermined driver chamber pressures, respectively. The bTBIs of 250 psi caused 80% mortality, which decreased to 27% with the metal shield. Brain and lung damage depended on the shockwave duration and amplitude. Cognitive deficits were assessed using the Morris water maze, Y-maze, and open-field tests. Pathological changes in the brain included disruption of the blood-brain barrier, multifocal neuronal and axonal degeneration, and reactive gliosis assessed by Evans Blue dye extravasation, silver and Fluoro-Jade B staining, and glial fibrillary acidic protein immunohistochemistry, respectively. Behavioral and pathological changes were injury severity-dependent. This mouse bTBI model may be useful for investigating injury mechanisms and therapeutic strategies associated with bTBI.Item Critical role of mitochondrial aldehyde dehydrogenase 2 in acrolein sequestering in rat spinal cord injury(Wolters Kluwer, 2022) Herr, Seth A.; Shi, Liangqin; Gianaris, Thomas; Jiao, Yucheng; Sun, Siyuan; Race, Nick; Shapiro, Scott; Shi, Riyi; Neurological Surgery, School of MedicineLipid peroxidation-derived aldehydes, such as acrolein, the most reactive aldehyde, have emerged as key culprits in sustaining post-spinal cord injury (SCI) secondary pathologies leading to functional loss. Strong evidence suggests that mitochondrial aldehyde dehydrogenase-2 (ALDH2), a key oxidoreductase and powerful endogenous anti-aldehyde machinery, is likely important for protecting neurons from aldehydes-mediated degeneration. Using a rat model of spinal cord contusion injury and recently discovered ALDH2 activator (Alda-1), we planned to validate the aldehyde-clearing and neuroprotective role of ALDH2. Over an acute 2 day period post injury, we found that ALDH2 expression was significantly lowered post-SCI, but not so in rats given Alda-1. This lower enzymatic expression may be linked to heightened acrolein-ALDH2 adduction, which was revealed in co-immunoprecipitation experiments. We have also found that administration of Alda-1 to SCI rats significantly lowered acrolein in the spinal cord, and reduced cyst pathology. In addition, Alda-1 treatment also resulted in significant improvement of motor function and attenuated post-SCI mechanical hypersensitivity up to 28 days post-SCI. Finally, ALDH2 was found to play a critical role in in vitro protection of PC12 cells from acrolein exposure. It is expected that the outcome of this study will broaden and enhance anti-aldehyde strategies in combating post-SCI neurodegeneration and potentially bring treatment to millions of SCI victims. All animal work was approved by Purdue Animal Care and Use Committee (approval No. 1111000095) on January 1, 2021.Item Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair(Wolters Kluwer, 2014) Chen, Jinhui; Shi, Riyi; Neurological Surgery, School of MedicineItem Neuroprotection by acrolein sequestration through exogenously applied scavengers and endogenous enzymatic enabling strategies in mouse EAE model(Springer Nature, 2024-03-12) Tang, Jonathan; Alford, Anna; Leung, Gary; Tully, Melissa; Shi, Riyi; Medicine, School of MedicineWe have previously shown that the pro-oxidative aldehyde acrolein is a critical factor in MS pathology. In this study, we found that the acrolein scavenger hydralazine (HZ), when applied from the day of induction, can suppress acrolein and alleviate motor and sensory deficits in a mouse experimental autoimmune encephalomyelitis (EAE) model. Furthermore, we also demonstrated that HZ can alleviate motor deficits when applied after the emergence of MS symptoms, making potential anti-acrolein treatment a more clinically relevant strategy. In addition, HZ can reduce both acrolein and MPO, suggesting a connection between acrolein and inflammation. We also found that in addition to HZ, phenelzine (PZ), a structurally distinct acrolein scavenger, can mitigate motor deficits in EAE when applied from the day of induction. This suggests that the likely chief factor of neuroprotection offered by these two structurally distinct acrolein scavengers in EAE is their common feature of acrolein neutralization. Finally, up-and-down regulation of the function of aldehyde dehydrogenase 2 (ALDH2) in EAE mice using either a pharmacological or genetic strategy led to correspondent motor and sensory changes. This data indicates a potential key role of ALDH2 in influencing acrolein levels, oxidative stress, inflammation, and behavior in EAE. These findings further consolidate the critical role of aldehydes in the pathology of EAE and its mechanisms of regulation. This is expected to reinforce and expand the possible therapeutic targets of anti-aldehyde treatment to achieve neuroprotection through both endogenous and exogenous manners.Item New Insights in the Pathogenesis of Multiple Sclerosis—Role of Acrolein in Neuronal and Myelin Damage(MDPI, 2013-10-09) Tully, Melissa; Shi, Riyi; Medicine, School of MedicineMultiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by an inappropriate inflammatory reaction resulting in widespread myelin injury along white matter tracts. Neurological impairment as a result of the disease can be attributed to immune-mediated injury to myelin, axons and mitochondria, but the molecular mechanisms underlying the neuropathy remain incompletely understood. Incomplete mechanistic knowledge hinders the development of therapies capable of alleviating symptoms and slowing disease progression in the long-term. Recently, oxidative stress has been implicated as a key component of neural tissue damage prompting investigation of reactive oxygen species (ROS) scavengers as a potential therapeutic option. Despite the establishment of oxidative stress as a crucial process in MS development and progression, ROS scavengers have had limited success in animal studies which has prompted pursuit of an alternative target capable of curtailing oxidative stress. Acrolein, a toxic β-unsaturated aldehyde capable of initiating and perpetuating oxidative stress, has been suggested as a viable point of intervention to guide the development of new treatments. Sequestering acrolein using an FDA-approved compound, hydralazine, offers neuroprotection resulting in dampened symptom severity and slowed disease progression in experimental autoimmune encephalomyelitis (EAE) mice. These results provide promise for therapeutic development, indicating the possible utility of neutralizing acrolein to preserve and improve neurological function in MS patients.Item Possible Neuroinflammatory Mechanisms Which May Lead to Long-Term Neurological Disorders in COVID-19 Patients(Indiana Medical Student Program for Research and Scholarship (IMPRS), 2020-12-15) Lange, Michael; Shi, Riyi; IU School of MedicineThis review aims to provide insight into the possible long-term neurological complications that COVID-19 patients may experience after the resolution of intense acute inflammation characterized as “cytokine storm.” Neurological symptoms such as fatigue, headache, dizziness, nausea, confusion, dyspnea, anorexia, malaise, myalgia, ataxia, seizure, hypogeusia, and hyposmia are commonly seen in these patients. COVID-19 related encephalitis is also seen sporadically. However, some researchers believe neuroinflammation is more common than what is reported. Neurological abnormalities that are linked to neuroinflammation are of particular concern because neuroinflammation is hypothesized to cause neurological diseases such as Alzheimer’s Disease, Parkinson’s Disease, and Schizophrenia. Many potential routes can lead to inflammation in the nervous system and elicit neuron cell death in COVID-19 patients. These include the potential neurotropic pathway of the novel coronavirus, CNS parenchymal infectability, thrombotic ischemic stroke, cytokine storm, and blood-brain barrier breakdown. Past pandemics of similar neurotropic viruses could also offer insights regarding the long-term neurological effects of COVID-19. In support of our hypothesis, the Spanish Flu pandemic of 1918-1919 saw an increased incidence of neurodegenerative disease, Parkinson’s disease, and schizophrenia. We do not know exactly what the future will hold for COVID-19 however, it is of paramount importance to attempt to anticipate and prepare for the possible chronic neurological sequelae and mitigate or prevent their effects.Item Psychosocial impairment following mild blast-induced traumatic brain injury in rats(Elsevier, 2021) Race, Nicholas S.; Andrews, Katharine D.; Lungwitz, Elizabeth A.; Vega Alvarez, Sasha M.; Warner, Timothy R.; Acosta, Glen; Cao, Jiayue; Lu, Kun-Han; Liu, Zhongming; Dietrich, Amy D.; Majumdar, Sreeparna; Shekhar, Anantha; Truitt, William A.; Shi, Riyi; Anatomy, Cell Biology and Physiology, School of MedicineTraumatic brain injury (TBI) is associated with increased risk for mental health disorders, impacting post-injury quality of life and societal reintegration. TBI is also associated with deficits in psychosocial processing, defined as the cognitive integration of social and emotional behaviors, however little is known about how these deficits manifest and their contributions to post-TBI mental health. In this pre-clinical investigation using rats, a single mild blast TBI (mbTBI) induced impairment of psychosocial processing in the absence of confounding physical polytrauma, post-injury motor deficits, affective abnormalities, or deficits in non-social behavior. Impairment severity correlated with acute upregulations of a known oxidative stress metabolite, 3-hydroxypropylmercapturic acid (3-HPMA), in urine. Resting state fMRI alterations in the acute post-injury period implicated key brain regions known to regulate psychosocial behavior, including orbitofrontal cortex (OFC), which is congruent with our previous report of elevated acrolein, a marker of neurotrauma and 3-HPMA precursor, in this region following mbTBI. OFC of mbTBI-exposed rats demonstrated elevated mRNA expression of metabotropic glutamate receptors 1 and 5 (mGluR1/5) and injection of mGluR1/5-selective agonist in OFC of uninjured rats approximated mbTBI-induced psychosocial processing impairment, demonstrating a novel role for OFC in this psychosocial behavior. Furthermore, OFC may serve as a hotspot for TBI-induced disruption of psychosocial processing and subsequent mental health disorders.