- Browse by Author
Browsing by Author "Shelley, William C."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The Assessment of Microbiome Changes and Fecal Volatile Organic Compounds during Experimental Necrotizing Enterocolitis(Elsevier, 2021) Hosfield, Brian D.; Drucker, Natalie A.; Pecoraro, Anthony R.; Shelley, William C.; Li, Hongge; Baxter, Nielson T.; Hawkins, Troy B.; Markel, Troy A.; Surgery, School of MedicineIntroduction: Necrotizing enterocolitis (NEC) remains a devastating disease that affects the gastrointestinal tract of the preterm infant. Volatile organic compounds (VOCs) have emerged as a non-invasive biomarker in many diseases. We hypothesized that fecal VOC profiles would be significantly different between control and NEC pups in a NEC mouse model. Methods: Experimental NEC was induced in five-day-old mice. Breastfed and formula-fed control groups were also studied. After four days, pups were euthanized and intestines were H&E stained and blindly scored. Stool microbiome analysis was performed via 16S rRNA sequencing. VOC analysis was assessed by the CyranoseⓇ 320 eNose device and p<0.05 was significant. Results: NEC pups had severe intestinal injury when compared to controls. Microbiome analysis showed that both control groups had significantly higher microbial diversity and relative abundance of Lactobacillus than NEC, and lower relative abundance of Escherichia. Fecal VOC profile for NEC pups was significantly different from controls. Conclusions: Experimental NEC was associated with intestinal dysbiosis. Fecal VOC analysis by the CyranoseⓇ 320 eNose device can discriminate NEC pups from both breastfed and formula-fed controls. Further research is warranted to establish whether fecal VOCs can be used as a biomarker or predictive algorithm to diagnose NEC.Item Epigenetic Activation of Pro-angiogenic Signaling Pathways in Human Endothelial Progenitors Increases Vasculogenesis(Cell Press, 2017-10-12) Fraineau, Sylvain; Palii, Carmen G.; McNeill, Brian; Ritso, Morten; Shelley, William C.; Prasain, Nutan; Chu, Alphonse; Vion, Elodie; Rieck, Kristy; Nilufar, Sharmin; Perkins, Theodore J.; Rudnicki, Michael A.; Allan, David S.; Yoder, Mervin C.; Suuronen, Erik J.; Brand, Marjorie; Pediatrics, School of MedicineHuman endothelial colony-forming cells (ECFCs) represent a promising source of adult stem cells for vascular repair, yet their regenerative capacity is limited. Here, we set out to understand the molecular mechanism restricting the repair function of ECFCs. We found that key pro-angiogenic pathways are repressed in ECFCs due to the presence of bivalent (H3K27me3/H3K4me3) epigenetic marks, which decreases the cells' regenerative potential. Importantly, ex vivo treatment with a combination of epigenetic drugs that resolves bivalent marks toward the transcriptionally active H3K4me3 state leads to the simultaneous activation of multiple pro-angiogenic signaling pathways (VEGFR, CXCR4, WNT, NOTCH, SHH). This in turn results in improved capacity of ECFCs to form capillary-like networks in vitro and in vivo. Furthermore, restoration of perfusion is accelerated upon transplantation of drug-treated ECFCs in a model of hindlimb ischemia. Thus, ex vivo treatment with epigenetic drugs increases the vascular repair properties of ECFCs through transient activation of pro-angiogenic signaling pathways., • Pro-angiogenic pathways are maintained in a poised state in ECFCs • Epigenetic drugs resolve bivalently marked genes toward an active state in ECFCs • Treatment with epigenetic drugs activates multiple pro-angiogenic pathways in ECFCs • Ex vivo treatment with epigenetic drugs increases ECFC-mediated vasculogenesis , Endothelial colony-forming cells (ECFCs) have the unique capability to form blood vessels in vivo. Here, Brand and colleagues show that the regenerative function of ECFCs is restricted by the presence of bivalent histone marks on pro-angiogenic genes. This poised status can be overcome through the combined action of epigenetic drugs that simultaneously activate multiple pro-angiogenic pathways to increase ECFC-mediated vasculogenesis.Item Origin, prospective identification, and function of circulating endothelial colony-forming cells in mice and humans(The American Society for Clinical Investigation, 2023-03-08) Lin, Yang; Banno, Kimihiko; Gil, Chang-Hyun; Myslinski, Jered; Hato, Takashi; Shelley, William C.; Gao, Hongyu; Xuei, Xiaoling; Basile, David P.; Yoshimoto, Momoko; Prasain, Nutan; Tarnawsky, Stefan P.; Adams, Ralf H.; Naruse, Katsuhiko; Yoshida, Junko; Murphy, Michael P.; Horie, Kyoji; Yoder, Mervin C.; Pediatrics, School of MedicineMost circulating endothelial cells are apoptotic, but rare circulating endothelial colony-forming cells (C-ECFCs), also known as blood outgrowth endothelial cells, with proliferative and vasculogenic activity can be cultured; however, the origin and naive function of these C-ECFCs remains obscure. Herein, detailed lineage tracing revealed murine C-ECFCs emerged in the early postnatal period, displayed high vasculogenic potential with enriched frequency of clonal proliferative cells compared with tissue-resident ECFCs, and were not committed to or derived from the BM hematopoietic system but from tissue-resident ECFCs. In humans, C-ECFCs were present in the CD34bright cord blood mononuclear subset, possessed proliferative potential and in vivo vasculogenic function in a naive or cultured state, and displayed a single cell transcriptome sharing some umbilical venous endothelial cell features, such as a higher protein C receptor and extracellular matrix gene expression. This study provides an advance for the field by identifying the origin, naive function, and antigens to prospectively isolate C-ECFCs for translational studies.Item Progenitor cell combination normalizes retinal vascular development in the oxygen-induced retinopathy (OIR) model(American Society for Clinical Investigation, 2019-11-01) Calzi, Sergio Li; Shaw, Lynn C.; Moldovan, Leni; Shelley, William C.; Qi, Xiaoping; Racette, Lyne; Quigley, Judith L.; Fortmann, Seth D.; Boulton, Michael E.; Yoder, Mervin C.; Grant, Maria B.; Pediatrics, School of MedicineRetinopathy of prematurity (ROP) is a disorder of the developing retina of preterm infants. ROP can lead to blindness because of abnormal angiogenesis that is the result of suspended vascular development and vaso-obliteration leading to severe retinal stress and hypoxia. We tested the hypothesis that the use of the human progenitor cell combination, bone marrow–derived CD34+ cells and vascular wall–derived endothelial colony–forming cells (ECFCs), would synergistically protect the developing retinal vasculature in a mouse model of ROP, called oxygen-induced retinopathy (OIR). CD34+ cells alone, ECFCs alone, or the combination thereof were injected intravitreally at either P5 or P12 and pups were euthanized at P17. Retinas from OIR mice injected with ECFCs or the combined treatment revealed formation of the deep vascular plexus (DVP) while still in hyperoxia, with normal-appearing connections between the superficial vascular plexus (SVP) and the DVP. In addition, the combination of cells completely prevented aberrant retinal neovascularization and was more effective anatomically and functionally at rescuing the ischemia phenotype than either cell type alone. We show that the beneficial effects of the cell combination are the result of their ability to orchestrate an acceleration of vascular development and more rapid ensheathment of pericytes on the developing vessels. Lastly, our proteomic and transcriptomic data sets reveal pathways altered by the dual cell therapy, including many involved in neuroretinal maintenance, and principal component analysis (PCA) showed that cell therapy restored OIR retinas to a state that was closely associated with age-matched normal retinas. Together, these data herein support the use of dual cell therapy as a promising preventive treatment for the development of ROP in premature infants.