- Browse by Author
Browsing by Author "Shaw, Lynn C."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial Injury Model(Hindawi, 2019-11-03) Li Calzi, Sergio; Cook, Todd; Della Rocca, Domenico G.; Zhang, Juan; Shenoy, Vinayak; Yan, Yuanqing; Espejo, Andrew; Rathinasabapathy, Anandharajan; Jacobsen, Max H.; Salazar, Tatiana; Sandusky, George E.; Shaw, Lynn C.; March, Keith; Raizada, Mohan K.; Pepine, Carl J.; Katovich, Michael J.; Grant, Maria B.; Medicine, School of MedicineWe compared the functional outcome of Isl-1+ cardiac progenitors, CD90+ bone marrow-derived progenitor cells, and the combination of the two in a rat myocardial infarction (MI) model. Isl-1+ cells were isolated from embryonic day 12.5 (E12.5) rat hearts and expanded in vitro. Thy-1+/CD90+ cells were isolated from the bone marrow of adult Sprague-Dawley rats by immunomagnetic cell sorting. Six-week-old female Sprague-Dawley rats underwent permanent left anterior descending (LAD) coronary artery ligation and received intramyocardial injection of either saline, Isl-1+ cells, CD90+ cells, or a combination of Isl-1+ and CD90+ cells, at the time of infarction. Cells were delivered transepicardially to the peri-infarct zone. Left ventricular function was assessed by transthoracic echocardiography at 1- and 4-week post-MI and by Millar catheterization (-dP/dt and +dP/dt) at 4-week post-MI. Fluorescence in situ hybridization (Isl-1+cells) and monochrystalline iron oxide nanoparticles labeling (MION; CD90+ cells) were performed to assess biodistribution of transplanted cells. Only the combination of cells demonstrated a significant improvement of cardiac function as assessed by anterior wall contractility, dP/dt (max), and dP/dt (min), compared to Isl-1+ or CD90+ cell monotherapies. In the combination cell group, viable cells were detected at week 4 when anterior wall motion was completely restored. In conclusion, the combination of Isl-1+ cardiac progenitors and adult bone marrow-derived CD90+ cells shows prolonged and robust myocardial tissue repair and provides support for the use of complementary cell populations to enhance myocardial repair.Item Progenitor cell combination normalizes retinal vascular development in the oxygen-induced retinopathy (OIR) model(American Society for Clinical Investigation, 2019-11-01) Calzi, Sergio Li; Shaw, Lynn C.; Moldovan, Leni; Shelley, William C.; Qi, Xiaoping; Racette, Lyne; Quigley, Judith L.; Fortmann, Seth D.; Boulton, Michael E.; Yoder, Mervin C.; Grant, Maria B.; Pediatrics, School of MedicineRetinopathy of prematurity (ROP) is a disorder of the developing retina of preterm infants. ROP can lead to blindness because of abnormal angiogenesis that is the result of suspended vascular development and vaso-obliteration leading to severe retinal stress and hypoxia. We tested the hypothesis that the use of the human progenitor cell combination, bone marrow–derived CD34+ cells and vascular wall–derived endothelial colony–forming cells (ECFCs), would synergistically protect the developing retinal vasculature in a mouse model of ROP, called oxygen-induced retinopathy (OIR). CD34+ cells alone, ECFCs alone, or the combination thereof were injected intravitreally at either P5 or P12 and pups were euthanized at P17. Retinas from OIR mice injected with ECFCs or the combined treatment revealed formation of the deep vascular plexus (DVP) while still in hyperoxia, with normal-appearing connections between the superficial vascular plexus (SVP) and the DVP. In addition, the combination of cells completely prevented aberrant retinal neovascularization and was more effective anatomically and functionally at rescuing the ischemia phenotype than either cell type alone. We show that the beneficial effects of the cell combination are the result of their ability to orchestrate an acceleration of vascular development and more rapid ensheathment of pericytes on the developing vessels. Lastly, our proteomic and transcriptomic data sets reveal pathways altered by the dual cell therapy, including many involved in neuroretinal maintenance, and principal component analysis (PCA) showed that cell therapy restored OIR retinas to a state that was closely associated with age-matched normal retinas. Together, these data herein support the use of dual cell therapy as a promising preventive treatment for the development of ROP in premature infants.Item Promoting vascular repair in the retina: can stem/progenitor cells help?(Dovepress, 2016-05-26) Phuong Trinh, Thao Le; Calzi, Sergio Li; Shaw, Lynn C.; Yoder, Mervin C.; Grant, Maria B.; Biochemistry and Molecular Biology, School of MedicineSince its first epidemic in the 1940s, retinopathy of prematurity (ROP) has been a challenging illness in neonatology. Higher than physiological oxygen levels impede the development of the immature retinal neuropil and vasculature. Current treatment regimens include cryotherapy, laser photocoagulation, and anti-VEGF agents. Unfortunately, none of these approaches can rescue the normal retinal vasculature, and each has significant safety concerns. The limitations of these approaches have led to new efforts to understand the pathological characteristics in each phase of ROP and to find a safer and more effective therapeutic approach. In the era of stem cell biology and with the need for new treatments for ROP, this review discusses the possible future use of unique populations of proangiogenic cells for therapeutic revascularization of the preterm retina.Item Promoting vascular repair in the retina: can stem/progenitor cells help?(Dove, 2016) Trinh, Thao Le Phuong; Calzi, Sergio Li; Shaw, Lynn C.; Yoder, Mervin C.; Grant, Maria B.; Department of Ophthalmology, IU School of MedicineSince its first epidemic in the 1940s, retinopathy of prematurity (ROP) has been a challenging illness in neonatology. Higher than physiological oxygen levels impede the development of the immature retinal neuropil and vasculature. Current treatment regimens include cryotherapy, laser photocoagulation, and anti-VEGF agents. Unfortunately, none of these approaches can rescue the normal retinal vasculature, and each has significant safety concerns. The limitations of these approaches have led to new efforts to understand the pathological characteristics in each phase of ROP and to find a safer and more effective therapeutic approach. In the era of stem cell biology and with the need for new treatments for ROP, this review discusses the possible future use of unique populations of proangiogenic cells for therapeutic revascularization of the preterm retina.