- Browse by Author
Browsing by Author "Shaw, Lynn"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Bone Marrow–Derived Cell Recruitment to the Neurosensory Retina and Retinal Pigment Epithelial Cell Layer Following Subthreshold Retinal Phototherapy(ARVO, 2017-10) Caballero, Sergio; Kent, David L.; Sengupta, Nilanjana; Li Calzi, Sergio; Shaw, Lynn; Beli, Eleni; Moldovan, Leni; Dominguez, James M.; Moorthy, Ramana S.; Grant, Maria B.; Medicine, School of MedicinePurpose We investigated whether subthreshold retinal phototherapy (SRPT) was associated with recruitment of bone marrow (BM)–derived cells to the neurosensory retina (NSR) and RPE layer. Methods GFP chimeric mice and wild-type (WT) mice were subjected to SRPT using a slit-lamp infrared laser. Duty cycles of 5%, 10%, 15%, and 20% (0.1 seconds, 250 mW, spot size 50 μm) with 30 applications were placed 50 to 100 μm from the optic disc. In adoptive transfer studies, GFP+ cells were given intravenously immediately after WT mice received SRPT. Immunohistochemistry was done for ionized calcium-binding adapter molecule-1 (IBA-1+), CD45, Griffonia simplicifolia lectin isolectin B4, GFP or cytokeratin). Expression of Ccl2, Il1b, Il6, Hspa1a, Hsp90aa1, Cryab, Hif1a, Cxcl12, and Cxcr4 mRNA and flow cytometry of the NSR and RPE-choroid were performed. Results Within 12 to 24 hours of SRPT, monocytes were detected in the NSR and RPE-choroid. Detection of reparative progenitors in the RPE occurred at 2 weeks using flow cytometry. Recruitment of GFP+ cells to the RPE layer occurred in a duty cycle–dependent manner in chimeric mice and in mice undergoing adoptive transfer. Hspa1a, Hsp90aa1, and Cryab mRNAs increased in the NSR at 2 hours post laser; Hif1a, Cxcl12, Hspa1a increased at 4 hours in the RPE-choroid; and Ccl2, Il1b, Ifng, and Il6 increased at 12 to 24 hours in the RPE-choroid. Conclusions SRPT induces monocyte recruitment to the RPE followed by hematopoietic progenitor cell homing at 2 weeks. Recruitment occurs in a duty cycle–dependent manner and potentially could contribute to the therapeutic efficacy of SRPT.Item Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation(Elsevier, 2017-10) Bhatwadekar, Ashay D.; Duan, Yaqian; Korah, Maria; Thinschmidt, Jeffrey S.; Hu, Ping; Leley, Sameer P.; Caballero, Sergio; Shaw, Lynn; Busik, Julia; Grant, Maria B.; Ophthalmology, School of MedicineThe widespread nature of diabetes affects all organ systems of an individual including the bone marrow. Long-term damage to the cellular and extracellular components of the bone marrow leads to a rapid decline in the bone marrow-hematopoietic stem/progenitor cells (HS/PCs) compartment. This review will highlight the importance of bone marrow microenvironment in maintaining bone marrow HS/PC populations and the contribution of these key populations in microvascular repair during the natural history of diabetes. The autonomic nervous system can initiate and propagate bone marrow dysfunction in diabetes. Systemic pharmacological strategies designed to protect the bone marrow-HS/PC population from diabetes induced-oxidative stress and advanced glycation end product accumulation represent a new approach to target diabetic retinopathy progression. Protecting HS/PCs ensures their participation in vascular repair and reduces the risk of vasogdegeneration occurring in the retina.Item Rap1B promotes VEGF-induced endothelial permeability and is required for dynamic regulation of the endothelial barrier(The Company of Biologists, 2018-01-10) Lakshmikanthan, Sribalaji; Sobczak, Magdalena; Li Calzi, Sergio; Shaw, Lynn; Grant, Maria B.; Chrzanowska-Wodnicka, Magdalena; Ophthalmology, School of MedicineVascular endothelial growth factor (VEGF), a key angiogenic and permeability factor, plays an important role in new blood vessel formation. However, abnormal VEGF-induced VEGFR2 signaling leads to hyperpermeability. We have shown previously that Rap1, best known for promoting cell adhesion and vessel stability, is a critical regulator of VEGFR2-mediated angiogenic and shear-stress EC responses. To determine the role of Rap1 role in endothelial barrier dynamics, we examined vascular permeability in EC-specific Rap1A- and Rap1B-knockout mice, cell-cell junction remodeling and EC monolayer resistivity in Rap1-deficient ECs under basal, inflammatory or elevated VEGF conditions. Deletion of either Rap1 isoform impaired de novo adherens junction (AJ) formation and recovery from LPS-induced barrier disruption in vivo However, only Rap1A deficiency increased permeability in ECs and lung vessels. Interestingly, Rap1B deficiency attenuated VEGF-induced permeability in vivo and AJ remodeling in vitro Therefore, only Rap1A is required for the maintenance of normal vascular integrity. Importantly, Rap1B is the primary isoform essential for normal VEGF-induced EC barrier dissolution. Deletion of either Rap1 isoform protected against hyper permeability in the STZ-induced diabetes model, suggesting clinical implications for targeting Rap1 in pathologies with VEGF-induced hyperpermeability.