- Browse by Author
Browsing by Author "Sato, Amy Y."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Glucocorticoid Excess in Bone and Muscle(Springer, 2018-03) Sato, Amy Y.; Peacock, Munro; Bellido, Teresita; Anatomy and Cell Biology, School of MedicineGlucocorticoids (GC), produced and released by the adrenal glands, regulate numerous physiological processes in a wide range of tissues. Because of their profound immunosuppressive and anti-inflammatory actions, GC are extensively used for the treatment of immune and inflammatory conditions, the management of organ transplantation, and as a component of chemotherapy regimens for cancers. However, both pathologic endogenous elevation and long-term use of exogenous GC are associated with severe adverse effects. In particular, excess GC has devastating effects on the musculoskeletal system. GC increase bone resorption and decrease formation leading to bone loss, microarchitectural deterioration and fracture. GC also induce loss of muscle mass and strength leading to an increased incidence of falls. The combined effects on bone and muscle account for the increased fracture risk with GC. This review summarizes the advance in knowledge in the last two decades about the mechanisms of action of GC in bone and muscle and the attempts to interfere with the damaging actions of GC in these tissues with the goal of developing more effective therapeutic strategies.Item Glucocorticoid-Induced Bone Fragility Is Prevented in Female Mice by Blocking Pyk2/Anoikis Signaling(Oxford, 2019-07) Sato, Amy Y.; Cregor, Meloney; McAndrews, Kevin; Li, Troy; Condon, Keith W.; Plotkin, Lilian I.; Bellido, Teresita; Anatomy and Cell Biology, IU School of MedicineExcess of glucocorticoids (GCs) is a leading cause of bone fragility, and therapeutic targets are sorely needed. We report that genetic deletion or pharmacological inhibition of proline-rich tyrosine kinase 2 (Pyk2) prevents GC-induced bone loss by overriding GC effects of detachment-induced bone cell apoptosis (anoikis). In wild-type or vehicle-treated mice, GCs either prevented osteoclast apoptosis or promoted osteoblast/osteocyte apoptosis. In contrast, mice lacking Pyk2 [knockout (KO)] or treated with Pyk2 kinase inhibitor PF-431396 (PF) were protected. KO or PF-treated mice were also protected from GC-induced bone resorption, microarchitecture deterioration, and weakening of biomechanical properties. In KO and PF-treated mice, GC increased osteoclasts in bone and circulating tartrate-resistant acid phosphatase form 5b, an index of osteoclast number. However, bone surfaces covered by osteoclasts and circulating C-terminal telopeptides of type I collagen, an index of osteoclast function, were not increased. The mismatch between osteoclast number vs function induced by Pyk2 deficiency/inhibition was due to osteoclast detachment and anoikis. Further, GC prolongation of osteoclast lifespan was absent in KO and PF-treated osteoclasts, demonstrating Pyk2 as an intrinsic osteoclast-survival regulator. Circumventing Pyk2 activation preserves skeletal integrity by preventing GC effects on bone cell survival (proapoptotic for osteoblasts/osteocytes, antiapoptotic for osteoclasts) and GC-induced bone resorption. Thus, Pyk2/anoikis signaling as a therapeutic target for GC-induced osteoporosis.Item Lrp4 Mediates Bone Homeostasis and Mechanotransduction through Interaction with Sclerostin In Vivo(Elsevier, 2019-10-25) Bullock, Whitney A.; Hoggatt, April M.; Horan, Daniel J.; Elmendorf, Andrew J.; Sato, Amy Y.; Bellido, Teresita; Loots, Gabriela G.; Pavalko, Fredrick M.; Robling, Alexander G.; Anatomy and Cell Biology, School of MedicineWnt signaling plays a key role in regulating bone remodeling. In vitro studies suggest that sclerostin's inhibitory action on Lrp5 is facilitated by the membrane-associated receptor Lrp4. We generated an Lrp4 R1170W knockin mouse model (Lrp4KI), based on a published mutation in patients with high bone mass (HBM). Lrp4KI mice have an HBM phenotype (assessed radiographically), including increased bone strength and formation. Overexpression of a Sost transgene had osteopenic effects in Lrp4-WT but not Lrp4KI mice. Conversely, sclerostin inhibition had blunted osteoanabolic effects in Lrp4KI mice. In a disuse-induced bone wasting model, Lrp4KI mice exhibit significantly less bone loss than wild-type (WT) mice. In summary, mice harboring the Lrp4-R1170W missense mutation recapitulate the human HBM phenotype, are less sensitive to altered sclerostin levels, and are protected from disuse-induced bone loss. Lrp4 is an attractive target for pharmacological targeting aimed at increasing bone mass and preventing bone loss due to disuse.Item MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production(Federation of American Societies for Experimental Biology, 2018-05) Delgado-Calle, Jesus; Hancock, Benjamin; Likine, Elive F.; Sato, Amy Y.; McAndrews, Kevin; Sanudo, Carolina; Bruzzaniti, Angela; Riancho, Jose A.; Tonra, James R.; Bellido, Teresita; Medicine, School of MedicineParathyroid hormone (PTH) affects the skeleton by acting on osteocytes (Ots) in bone through yet unclear mechanisms. We report that matrix metalloproteinase 14 (MMP14) expression/activity are increased in bones from mice with genetic constitutive activation (ca) of the PTH receptor 1 (PTH1R) in Ots (caPTH1ROt) and in bones from mice exposed to elevated PTH levels but not in mice lacking [conditional knockout (cKO)] the PTH1R in Ots (cKOPTH1ROt). Furthermore, PTH upregulates MMP14 in human bone cultures and in Ot-enriched bones from floxed control mice but not from cKOPTH1ROt mice. MMP14 activity increases soluble receptor activator of NF-κΒ ligand production, which in turn, stimulates osteoclast differentiation and resorption. Pharmacologic inhibition of MMP14 activity reduced the high bone remodeling exhibited by caPTH1ROt mice or induced by chronic PTH elevation and decreased bone resorption but allowed full stimulation of bone formation induced by PTH injections, thereby potentiating bone gain. Thus, MMP14 is a new member of the intricate gene network activated in Ots by PTH1R signaling that can be targeted to adjust the skeletal responses to PTH in favor of bone preservation.-Delgado-Calle, J., Hancock, B., Likine, E. F., Sato, A. Y., McAndrews, K., Sanudo, C., Bruzzaniti, A., Riancho, J. A., Tonra, J. R., Bellido, T. MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production.Item Myogenic tissue nanotransfection improves muscle torque recovery following volumetric muscle loss(Nature, 2022) Clark, Andrew; Ghatak, Subhadip; Guda, Poornachander Reddy; El Masry, Mohamed S.; Xuan, Yi; Sato, Amy Y.; Bellido, Teresita; Sen, Chandan K.; Surgery, School of MedicineThis work rests on our non-viral tissue nanotransfection (TNT) platform to deliver MyoD (TNT) to injured tissue in vivo. TNT was performed on skin and successfully induced expression of myogenic factors. TNT was then used as a therapy 7 days following volumetric muscle loss (VML) of rat tibialis anterior and rescued muscle function. TNT is promising as VML intervention.Item Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice(Elsevier, 2015-04) Sato, Amy Y.; Tu, Xiaolin; McAndrews, Kevin A.; Plotkin, Lilian I.; Bellido, Teresita; Department of Anatomy & Cell Biology, IU School of MedicineEndoplasmic reticulum (ER) stress is associated with increased reactive oxygen species (ROS), results from accumulation of misfolded/unfolded proteins, and can trigger apoptosis. ER stress is alleviated by phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which inhibits protein translation allowing the ER to recover, thus promoting cell viability. We investigated whether osteoblastic cell apoptosis induced by glucocorticoids (GCs) is due to induction of ROS/ER stress and whether inhibition of eIF2α dephosphorylation promotes survival opposing the deleterious effects of GC in vitro and in vivo. Apoptosis of osteocytic MLO-Y4 and osteoblastic OB-6 cells induced by dexamethasone was abolished by ROS inhibitors. Like GC, the ER stress inducing agents brefeldin A and tunicamycin induced osteoblastic cell apoptosis. Salubrinal or guanabenz, specific inhibitors of eIF2α dephosphorylation, blocked apoptosis induced by either GC or ER stress inducers. Moreover, GC markedly decreased mineralization in OB-6 cells or primary osteoblasts; and salubrinal or guanabenz increased mineralization and prevented the inhibitory effect of GC. Furthermore, salubrinal (1 mg/kg/day) abolished osteoblast and osteocyte apoptosis in cancellous and cortical bone and partially prevented the loss of BMD at all sites and the decreased vertebral cancellous bone formation induced by treatment with prednisolone for 28 days (1.4 mg/kg/day). We conclude that part of the pro-apoptotic actions of GC on osteoblastic cells is mediated through ER stress, and that inhibition of eIF2α dephosphorylation protects from GC-induced apoptosis of osteoblasts and osteocytes in vitro and in vivo and from the deleterious effects of GC on the skeleton.Item Protection From Glucocorticoid-Induced Osteoporosis by Anti-Catabolic Signaling in the Absence of Sost/Sclerostin(Wiley, 2016-10) Sato, Amy Y.; Cregor, Meloney; Delgado-Calle, Jesus; Condon, Keith W.; Allen, Matthew R.; Peacock, Munro; Plotkin, Lilian I.; Bellido, Teresita; Anatomy, Cell Biology and Physiology, School of MedicineExcess of glucocorticoids, either due to disease or iatrogenic, increases bone resorption and decreases bone formation and is a leading cause of osteoporosis and bone fractures worldwide. Improved therapeutic strategies are sorely needed. We investigated whether activating Wnt/β-catenin signaling protects against the skeletal actions of glucocorticoids, using female mice lacking the Wnt/β-catenin antagonist and bone formation inhibitor Sost. Glucocorticoids decreased the mass, deteriorated the microarchitecture, and reduced the structural and material strength of bone in wild-type (WT), but not in Sost-/- mice. The high bone mass exhibited by Sost-/- mice is due to increased bone formation with unchanged resorption. However, unexpectedly, preservation of bone mass and strength in Sost-/- mice was due to prevention of glucocorticoid-induced bone resorption and not to restoration of bone formation. In WT mice, glucocorticoids increased the expression of Sost and the number of sclerostin-positive osteocytes, and altered the molecular signature of the Wnt/β-catenin pathway by decreasing the expression of genes associated with both anti-catabolism, including osteoprotegerin (OPG), and anabolism/survival, such as cyclin D1. In contrast in Sost-/- mice, glucocorticoids did not decrease OPG but still reduced cyclin D1. Thus, in the context of glucocorticoid excess, activation of Wnt/β-catenin signaling by Sost/sclerostin deficiency sustains bone integrity by opposing bone catabolism despite markedly reduced bone formation and increased apoptosis. This crosstalk between glucocorticoids and Wnt/β-catenin signaling could be exploited therapeutically to halt resorption and bone loss induced by glucocorticoids and to inhibit the exaggerated bone formation in diseases of unwanted hyperactivation of Wnt/β-catenin signaling.Item PTHrP-Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loading(Wiley, 2017-03) Maycas, Marta; McAndrews, Kevin A.; Sato, Amy Y.; Pellegrini, Gretel G.; Brown, Drew M.; Allen, Matthew R.; Plotkin, Lilian I.; Gortazar, Arancha R.; Esbrit, Pedro; Bellido, Teresita; Department of Anatomy and Cell Biology, School of MedicineThere is an unmet need to understand the mechanisms underlying skeletal deterioration in diabetes mellitus (DM) and to develop therapeutic approaches to treat bone fragility in diabetic patients. We demonstrate herein that mice with type 1 DM induced by streptozotocin exhibited low bone mass, inferior mechanical and material properties, increased bone resorption, decreased bone formation, increased apoptosis of osteocytes, and increased expression of the osteocyte-derived bone formation inhibitor Sost/sclerostin. Further, short treatment of diabetic mice with parathyroid hormone related protein (PTHrP)-derived peptides corrected these changes to levels undistinguishable from non-diabetic mice. In addition, diabetic mice exhibited reduced bone formation in response to mechanical stimulation, which was corrected by treatment with the PTHrP peptides, and higher prevalence of apoptotic osteocytes, which was reduced by loading or by the PTHrP peptides alone and reversed by a combination of loading and PTHrP peptide treatment. In vitro experiments demonstrated that the PTHrP peptides or mechanical stimulation by fluid flow activated the survival kinases ERKs and induced nuclear translocation of the canonical Wnt signaling mediator β-catenin, and prevented the increase in osteocytic cell apoptosis induced by high glucose. Thus, PTHrP-derived peptides cross-talk with mechanical signaling pathways to reverse skeletal deterioration induced by DM in mice. These findings suggest a crucial role of osteocytes in the harmful effects of diabetes on bone and raise the possibility of targeting these cells as a novel approach to treat skeletal deterioration in diabetes. Moreover, our study suggests the potential therapeutic efficacy of combined pharmacological and mechanical stimuli to promote bone accrual and maintenance in diabetic subjects.Item Raloxifene Prevents Skeletal Fragility in Adult Female Zucker Diabetic Sprague-Dawley Rats(2014-09-22) Hill Gallant, Kathleen M.; Gallant, Maxime A.; Brown, Drew M.; Sato, Amy Y.; Wiliams, Justin N.; Burr, David B.Item Role and mechanism of action of Sclerostin in bone(Elsevier, 2017-03) Delgado-Calle, Jesus; Sato, Amy Y.; Bellido, Teresita; Anatomy and Cell Biology, School of MedicineAfter discovering that lack of Sost/sclerostin expression is the cause of the high bone mass human syndromes Van Buchem disease and sclerosteosis, extensive animal experimentation and clinical studies demonstrated that sclerostin plays a critical role in bone homeostasis and that its deficiency or pharmacological neutralization increases bone formation. Dysregulation of sclerostin expression also underlies the pathophysiology of skeletal disorders characterized by loss of bone mass as well as the damaging effects of some cancers in bone. Thus, sclerostin has quickly become a promising molecular target for the treatment of osteoporosis and other skeletal diseases, and beneficial skeletal outcomes are observed in animal studies and clinical trials using neutralizing antibodies against sclerostin. However, the anabolic effect of blocking sclerostin decreases with time, bone mass accrual is also accompanied by anti-catabolic effects, and there is bone loss over time after therapy discontinuation. Further, the cellular source of sclerostin in the bone/bone marrow microenvironment under physiological and pathological conditions, the pathways that regulate sclerostin expression and the mechanisms by which sclerostin modulates the activity of osteocytes, osteoblasts, and osteoclasts remain unclear. In this review, we highlight the current knowledge on the regulation of Sost/sclerotin expression and its mechanism(s) of action, discuss novel observations regarding its role in signaling pathways activated by hormones and mechanical stimuli in bone, and propose future research needed to understand the full potential of therapeutic interventions that modulate Sost/sclerostin expression.