ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Roys, Steven"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Phase Image Texture Analysis for Motion Detection in Diffusion MRI (PITA-MDD)
    (Elsevier, 2019-10) Elsaid, Nahla M. H.; Prince, Jerry L.; Roys, Steven; Gullapalli, Rao P.; Zhuo, Jiachen; Radiology and Imaging Sciences, School of Medicine
    Purpose Pronounced spin phase artifacts appear in diffusion-weighted imaging (DWI) with only minor subject motion. While DWI data corruption is often identified as signal drop out in diffusion-weighted (DW) magnitude images, DW phase images may have higher sensitivity for detecting subtle subject motion. Methods This article describes a novel method to return a metric of subject motion, computed using an image texture analysis of the DW phase image. This Phase Image Texture Analysis for Motion Detection in dMRI (PITA-MDD) method is computationally fast and reliably detects subject motion from diffusion-weighted images. A threshold of the motion metric was identified to remove motion-corrupted slices, and the effect of removing corrupted slices was assessed on the reconstructed FA maps and fiber tracts. Results Using a motion-metric threshold to remove the motion-corrupted slices results in superior fiber tracts and fractional anisotropy maps. When further compared to a state-of-the-art magnitude-based motion correction method, PITA-MDD was able to detect comparable corrupted slices in a more computationally efficient manner. Conclusion In this study, we evaluated the use of DW phase images to detect motion corruption. The proposed method can be a robust and fast alternative for automatic motion detection in the brain with multiple applications to inform prospective motion correction or as real-time feedback for data quality control during scanning, as well as after data is already acquired.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University