- Browse by Author
Browsing by Author "Rowe, Christopher C."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item APOE ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies(Wiley, 2022) Wang, Tingting; Huynh, Kevin; Giles, Corey; Mellett, Natalie A.; Duong, Thy; Nguyen, Anh; Lim, Wei Ling Florence; Smith, Alex At; Olshansky, Gavriel; Cadby, Gemma; Hung, Joseph; Hui, Jennie; Beilby, John; Watts, Gerald F.; Chatterjee, Pratishtha; Martins, Ian; Laws, Simon M.; Bush, Ashley I.; Rowe, Christopher C.; Villemagne, Victor L.; Ames, David; Masters, Colin L.; Taddei, Kevin; Doré, Vincent; Fripp, Jürgen; Arnold, Matthias; Kastenmüller, Gabi; Nho, Kwangsik; Saykin, Andrew J.; Baillie, Rebecca; Han, Xianlin; Martins, Ralph N.; Moses, Eric K.; Kaddurah-Daouk, Rima; Meikle, Peter J.; Radiology and Imaging Sciences, School of MedicineIntroduction: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. Methods: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. Results: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. Discussion: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.Item Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease(Springer Nature, 2022-06-06) Cadby, Gemma; Giles, Corey; Melton, Phillip E.; Huynh, Kevin; Mellett, Natalie A.; Duong, Thy; Nguyen, Anh; Cinel, Michelle; Smith, Alex; Olshansky, Gavriel; Wang, Tingting; Brozynska, Marta; Inouye, Mike; McCarthy, Nina S.; Ariff, Amir; Hung, Joseph; Hui, Jennie; Beilby, John; Dubé, Marie-Pierre; Watts, Gerald F.; Shah, Sonia; Wray, Naomi R.; Lim, Wei Ling Florence; Chatterjee, Pratishtha; Martins, Ian; Laws, Simon M.; Porter, Tenielle; Vacher, Michael; Bush, Ashley I.; Rowe, Christopher C.; Villemagne, Victor L.; Ames, David; Masters, Colin L.; Taddei, Kevin; Arnold, Matthias; Kastenmüller, Gabi; Nho, Kwangsik; Saykin, Andrew J.; Han, Xianlin; Kaddurah-Daouk, Rima; Martins, Ralph N.; Blangero, John; Meikle, Peter J.; Moses, Eric K.; Radiology and Imaging Sciences, School of MedicineWe integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases.Item Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease(Nature, 2020-11-10) Huynh, Kevin; Lim, Wei Ling Florence; Giles, Corey; Jayawardana, Kaushala S.; Salim, Agus; Mellett, Natalie A.; Smith, Adam Alexander T.; Olshansky, Gavriel; Drew, Brian G.; Chatterjee, Pratishtha; Martins, Ian; Laws, Simon M.; Bush, Ashley I.; Rowe, Christopher C.; Villemagne, Victor L.; Ames, David; Masters, Colin L.; Arnold, Matthias; Nho, Kwangsik; Saykin, Andrew J.; Baillie, Rebecca; Han, Xianlin; Kaddurah-Daouk, Rima; Martins, Ralph N.; Meikle, Peter J.; BioHealth Informatics, School of Informatics and ComputingChanges to lipid metabolism are tightly associated with the onset and pathology of Alzheimer’s disease (AD). Lipids are complex molecules comprising many isomeric and isobaric species, necessitating detailed analysis to enable interpretation of biological significance. Our expanded targeted lipidomics platform (569 species across 32 classes) allows for detailed lipid separation and characterisation. In this study we examined peripheral samples of two cohorts (AIBL, n = 1112 and ADNI, n = 800). We are able to identify concordant peripheral signatures associated with prevalent AD arising from lipid pathways including; ether lipids, sphingolipids (notably GM3 gangliosides) and lipid classes previously associated with cardiometabolic disease (phosphatidylethanolamine and triglycerides). We subsequently identified similar lipid signatures in both cohorts with future disease. Lastly, we developed multivariate lipid models that improved classification and prediction. Our results provide a holistic view between the lipidome and AD using a comprehensive approach, providing targets for further mechanistic investigation., The onset and pathology of Alzheimer’s disease (AD) is associated with changes to lipid metabolism. Here, the authors analysed 569 lipids from 32 classes and subclasses in two independent patient cohorts to identify key lipid pathways to link the plasma lipidome with AD and the future onset of AD.Item Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer disease: Phase 3 study(Elsevier, 2015) Sabri, Osama; Sabbagh, Marwan N.; Seibyl, John; Barthel, Henryk; Akatsu, Hiroyasu; Ouchi, Yasuomi; Senda, Kohei; Murayama, Shigeo; Ishii, Kenji; Takao, Masaki; Beach, Thomas G.; Rowe, Christopher C.; Leverenz, James B.; Ghetti, Bernardino; Ironside, James W.; Catafau, Ana M.; Stephens, Andrew W.; Mueller, Andre; Koglin, Norman; Hoffman, Anja; Roth, Katrin; Reininger, Cornelia; Schulz-Schaeffer, Walter J.; Department of Pathology and Laboratory Medicine, IU School of MedicineBackground Evaluation of brain β-amyloid by positron emission tomography (PET) imaging can assist in the diagnosis of Alzheimer disease (AD) and other dementias. Methods Open-label, nonrandomized, multicenter, phase 3 study to validate the 18F-labeled β-amyloid tracer florbetaben by comparing in vivo PET imaging with post-mortem histopathology. Results Brain images and tissue from 74 deceased subjects (of 216 trial participants) were analyzed. Forty-six of 47 neuritic β-amyloid-positive cases were read as PET positive, and 24 of 27 neuritic β-amyloid plaque-negative cases were read as PET negative (sensitivity 97.9% [95% confidence interval or CI 93.8–100%], specificity 88.9% [95% CI 77.0–100%]). In a subgroup, a regional tissue-scan matched analysis was performed. In areas known to strongly accumulate β-amyloid plaques, sensitivity and specificity were 82% to 90%, and 86% to 95%, respectively. Conclusions Florbetaben PET shows high sensitivity and specificity for the detection of histopathology-confirmed neuritic β-amyloid plaques and may thus be a valuable adjunct to clinical diagnosis, particularly for the exclusion of AD.Item Impact of Training Method on the Robustness of the Visual Assessment of 18F-Florbetaben PET Scans: Results from a Phase-3 Study(SNM, 2016-06) Seibyl, John; Catafau, Ana M.; Barthel, Henryk; Ishii, Kenji; Rowe, Christopher C.; Leverenz, James B.; Ghetti, Bernardino; Ironside, James W.; Takao, Masaki; Akatsu, Hiroyasu; Murayama, Shigeo; Bullich, Santiago; Mueller, Andre; Koglin, Norman; Schulz-Schaeffer, Walter J.; Hoffmann, Anja; Sabbagh, Marwan N.; Stephens, Andrew W.; Sabri, Osama; Department of Pathology & Laboratory Medicine, IU School of MedicineTraining for accurate image interpretation is essential for the clinical use of β-amyloid PET imaging, but the role of interpreter training and the accuracy of the algorithm for routine visual assessment of florbetaben PET scans are unclear. The aim of this study was to test the robustness of the visual assessment method for florbetaben scans, comparing efficacy readouts across different interpreters and training methods and against a histopathology standard of truth (SoT). Methods: Analysis was based on data from an international open-label, nonrandomized, multicenter phase-3 study in patients with or without dementia (ClinicalTrials.gov: NCT01020838). Florbetaben scans were assessed visually and quantitatively, and results were compared with amyloid plaque scores. For visual assessment, either in-person training (n = 3 expert interpreters) or an electronic training method (n = 5 naïve interpreters) was used. Brain samples from participants who died during the study were used to determine the histopathologic SoT using Bielschowsky silver staining (BSS) and immunohistochemistry for β-amyloid plaques. Results: Data were available from 82 patients who died and underwent postmortem histopathology. When visual assessment results were compared with BSS + immunohistochemistry as SoT, median sensitivity was 98.2% for the in-person–trained interpreters and 96.4% for the e-trained interpreters, and median specificity was 92.3% and 88.5%, respectively. Median accuracy was 95.1% and 91.5%, respectively. On the basis of BSS only as the SoT, median sensitivity was 98.1% and 96.2%, respectively; median specificity was 80.0% and 76.7%, respectively; and median accuracy was 91.5% and 86.6%, respectively. Interinterpreter agreement (Fleiss κ) was excellent (0.89) for in-person–trained interpreters and very good (0.71) for e-trained interpreters. Median intrainterpreter agreement was 0.9 for both in-person–trained and e-trained interpreters. Visual and quantitative assessments were concordant in 88.9% of scans for in-person–trained interpreters and in 87.7% of scans for e-trained interpreters. Conclusion: Visual assessment of florbetaben images was robust in challenging scans from elderly end-of-life individuals. Sensitivity, specificity, and interinterpreter agreement were high, independent of expertise and training method. Visual assessment was accurate and reliable for detection of plaques using BSS and immunohistochemistry and well correlated with quantitative assessments.Item Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease(American Academy of Neurology, 2021-03-23) Joseph-Mathurin, Nelly; Wang, Guoqiao; Kantarci, Kejal; Jack, Clifford R., Jr.; McDade, Eric; Hassenstab, Jason; Blazey, Tyler M.; Gordon, Brian A.; Su, Yi; Chen, Gengsheng; Massoumzadeh, Parinaz; Hornbeck, Russ C.; Allegri, Ricardo F.; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Brooks, William S.; Cash, David M.; Chhatwal, Jasmeer P.; Chui, Helena C.; Correia, Stephen; Cruchaga, Carlos; Farlow, Martin R.; Fox, Nick C.; Fulham, Michael; Ghetti, Bernardino; Graff-Radford, Neill R.; Johnson, Keith A.; Karch, Celeste M.; Laske, Christoph; Lee, Athene K.W.; Levin, Johannes; Masters, Colin L.; Noble, James M.; O’Connor, Antoinette; Perrin, Richard J.; Preboske, Gregory M.; Ringman, John M.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Schofield, Peter R.; Shimada, Hiroyuki; Shoji, Mikio; Suzuki, Kazushi; Villemagne, Victor L.; Xiong, Chengjie; Yakushev, Igor; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L.S.; Pathology and Laboratory Medicine, School of MedicineObjective: To investigate the inherent clinical risks associated with the presence of cerebral microhemorrhages (CMHs) or cerebral microbleeds and characterize individuals at high risk for developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we longitudinally evaluated families with dominantly inherited Alzheimer disease (DIAD). Methods: Mutation carriers (n = 310) and noncarriers (n = 201) underwent neuroimaging, including gradient echo MRI sequences to detect CMHs, and neuropsychological and clinical assessments. Cross-sectional and longitudinal analyses evaluated relationships between CMHs and neuroimaging and clinical markers of disease. Results: Three percent of noncarriers and 8% of carriers developed CMHs primarily located in lobar areas. Carriers with CMHs were older, had higher diastolic blood pressure and Hachinski ischemic scores, and more clinical, cognitive, and motor impairments than those without CMHs. APOE ε4 status was not associated with the prevalence or incidence of CMHs. Prevalent or incident CMHs predicted faster change in Clinical Dementia Rating although not composite cognitive measure, cortical thickness, hippocampal volume, or white matter lesions. Critically, the presence of 2 or more CMHs was associated with a significant risk for development of additional CMHs over time (8.95 ± 10.04 per year). Conclusion: Our study highlights factors associated with the development of CMHs in individuals with DIAD. CMHs are a part of the underlying disease process in DIAD and are significantly associated with dementia. This highlights that in participants in treatment trials exposed to drugs, which carry the risk of ARIA-H as a complication, it may be challenging to separate natural incidence of CMHs from drug-related CMHs.Item Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study(Elsevier, 2018-01) Kinnunen, Kirsi M.; Cash, David M.; Poole, Teresa; Frost, Chris; Benzinger, Tammie L. S.; Ahsan, R. Laila; Leung, Kelvin K.; Cardoso, M. Jorge; Modat, Marc; Malone, Ian B.; Morris, John C.; Bateman, Randall J.; Marcus, Daniel S.; Goate, Alison; Salloway, Stephen P.; Correia, Stephen; Sperling, Reisa A.; Chhatwal, Jasmeer P.; Mayeux, Richard P.; Brickman, Adam M.; Martins, Ralph N.; Farlow, Martin R.; Ghetti, Bernardino; Saykin, Andrew J.; Jack, Clifford R.; Schofield, Peter R.; McDade, Eric; Weiner, Michael W.; Ringman, John M.; Thompson, Paul M.; Masters, Colin L.; Rowe, Christopher C.; Rossor, Martin N.; Ourselin, Sebastien; Fox, Nick C.; Neurology, School of MedicineINTRODUCTION: Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. METHODS: Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. RESULTS: Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. DISCUSSION: Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression.Item Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease(Elsevier, 2020-08-01) Schultz, Stephanie A.; Strain, Jeremy F.; Adedokun, Adedamola; Wang, Qing; Preische, Oliver; Kuhle, Jens; Flores, Shaney; Keefe, Sarah; Dincer, Aylin; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Cash, David M.; Chhatwal, Jasmeer; Cruchaga, Carlos; Ewers, Michael; Fox, Nick N.; Ghetti, Bernardino; Goate, Alison; Graff-Radford, Neill R.; Hassenstab, Jason J.; Hornbeck, Russ; Jack, Clifford; Johnson, Keith; Joseph-Mathurin, Nelly; Karch, Celeste M.; Koeppe, Robert A.; Lee, Athene K. W.; Levin, Johannes; Masters, Colin; McDade, Eric; Perrin, Richard J.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Sperling, Reisa; Su, Yi; Villemagne, Victor L.; Vöglein, Jonathan; Weiner, Michael; Xiong, Chengjie; Fagan, Anne M.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.; Jucker, Mathias; Gordon, Brian A.; Pathology and Laboratory Medicine, School of MedicineNeurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases.Item The Worldwide Alzheimer's Disease Neuroimaging Initiative: ADNI‐3 updates and global perspectives(Alzheimer’s Association, 2021-12-31) Weber, Christopher J.; Carrillo, Maria C.; Jagust, William; Jack, Clifford R., Jr.; Shaw, Leslie M.; Trojanowski, John Q.; Saykin, Andrew J.; Beckett, Laurel A.; Sur, Cyrille; Rao, Naren P.; Mendez, Patricio Chrem; Black, Sandra E.; Li, Kuncheng; Iwatsubo, Takeshi; Chang, Chiung-Chih; Sosa, Ana Luisa; Rowe, Christopher C.; Perrin, Richard J.; Morris, John C.; Healan, Amanda M.B.; Hall, Stephen E.; Weiner, Michael W.; Radiology and Imaging Sciences, School of MedicineThe Worldwide Alzheimer's Disease Neuroimaging Initiative (WW‐ADNI) is a collaborative effort to investigate imaging and biofluid markers that can inform Alzheimer's disease treatment trials. It is a public‐private partnership that spans North America, Argentina, Australia, Canada, China, Japan, Korea, Mexico, and Taiwan. In 2004, ADNI researchers began a naturalistic, longitudinal study that continues today around the globe. Through several successive phases (ADNI‐1, ADNI‐GO, ADNI‐2, and ADNI‐3), the study has fueled amyloid and tau phenotyping and refined neuroimaging methodologies. WW‐ADNI researchers have successfully standardized analyses and openly share data without embargo, providing a rich data set for other investigators. On August 26, 2020, the Alzheimer's Association convened WW‐ADNI researchers who shared updates from ADNI‐3 and their vision for ADNI‐4.