- Browse by Author
Browsing by Author "Rosewood, Thea"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item CYP1B1-RMDN2 Alzheimer's disease endophenotype locus identified for cerebral tau PET(Springer Nature, 2024-09-20) Nho, Kwangsik; Risacher, Shannon L.; Apostolova, Liana G.; Bice, Paula J.; Brosch, Jared R.; Deardorff, Rachael; Faber, Kelley; Farlow, Martin R.; Foroud, Tatiana; Gao, Sujuan; Rosewood, Thea; Kim, Jun Pyo; Nudelman, Kelly; Yu, Meichen; Aisen, Paul; Sperling, Reisa; Hooli, Basavaraj; Shcherbinin, Sergey; Svaldi, Diana; Jack, Clifford R., Jr.; Jagust, William J.; Landau, Susan; Vasanthakumar, Aparna; Waring, Jeffrey F.; Doré, Vincent; Laws, Simon M.; Masters, Colin L.; Porter, Tenielle; Rowe, Christopher C.; Villemagne, Victor L.; Dumitrescu, Logan; Hohman, Timothy J.; Libby, Julia B.; Mormino, Elizabeth; Buckley, Rachel F.; Johnson, Keith; Yang, Hyun-Sik; Petersen, Ronald C.; Ramanan, Vijay K.; Ertekin-Taner, Nilüfer; Vemuri, Prashanthi; Cohen, Ann D.; Fan, Kang-Hsien; Kamboh, M. Ilyas; Lopez, Oscar L.; Bennett, David A.; Ali, Muhammad; Benzinger, Tammie; Cruchaga, Carlos; Hobbs, Diana; De Jager, Philip L.; Fujita, Masashi; Jadhav, Vaishnavi; Lamb, Bruce T.; Tsai, Andy P.; Castanho, Isabel; Mill, Jonathan; Weiner, Michael W.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Department of Defense Alzheimer’s Disease Neuroimaging Initiative (DoD-ADNI); Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Study (A4 Study) and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN); Australian Imaging, Biomarker & Lifestyle Study (AIBL); Saykin, Andrew J.; Radiology and Imaging Sciences, School of MedicineDetermining the genetic architecture of Alzheimer's disease pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we perform a genome-wide association study of cortical tau quantified by positron emission tomography in 3046 participants from 12 independent studies. The CYP1B1-RMDN2 locus is associated with tau deposition. The most significant signal is at rs2113389, explaining 4.3% of the variation in cortical tau, while APOE4 rs429358 accounts for 3.6%. rs2113389 is associated with higher tau and faster cognitive decline. Additive effects, but no interactions, are observed between rs2113389 and diagnosis, APOE4, and amyloid beta positivity. CYP1B1 expression is upregulated in AD. rs2113389 is associated with higher CYP1B1 expression and methylation levels. Mouse model studies provide additional functional evidence for a relationship between CYP1B1 and tau deposition but not amyloid beta. These results provide insight into the genetic basis of cerebral tau deposition and support novel pathways for therapeutic development in AD.Item Functional insight into East Asian-specific genetic risk loci for Alzheimer's disease(Wiley, 2025) Cho, Minyoung; Chaudhuri, Soumilee; Liu, Shiwei; Park, Tamina; Huang, Yen-Ning; Rosewood, Thea; Bice, Paula J.; Saykin, Andrew J.; Won, Hong-Hee; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineIntroduction: The functional study of genetic risk factors for Alzheimer's disease (AD) provides insights into the underlying mechanisms and identification of potential therapeutic targets. Investigating AD-associated genetic loci identified in East Asian populations using single-nucleus RNA-sequencing data may identify novel functional genetic contributors. Methods: Cell type-specific expression quantitative trait loci (eQTL) and peak-to-gene links were used to identify functional genes associated with 26 genetic loci from seven genome-wide association studies (GWAS) for AD in East Asians. Results: KCNJ6 and MAPK1IP1L were identified as significant eQTLs with AD risk loci. AD risk loci were in peaks related to four genes, with CLIC4 being connected across different cell types. Genes identified in European and East Asian GWAS interacted within networks and were enriched in AD pathology pathways in astrocytes. Discussion: Our findings suggest KCNJ6 and CLIC4 as novel AD-associated functional genes, providing insight into the genetic architecture of AD in East Asians. Highlights: Integrated functional analysis of Alzheimer's disease (AD) loci in seven East Asian genome-wide association studies (GWAS) was performed. Cell type-specific expression quantitative trait loci (eQTLs) and assay for transposase-accessible chromatin peaks were used to identify AD functional genes. An AD risk variant was linked to KCNJ6 through an oligodendrocyte progenitor cell-specific eQTL. An AD risk variant maps to open chromatin, linked to CLIC4 across six cell types. Astrocyte differentially expressed genes by AD pathology are enriched in East Asian and European GWAS genes.Item Genome-wide transcriptome analysis of Aβ deposition on PET in a Korean cohort(Wiley, 2024) Park, Tamina; Hwang, Jiyun; Liu, Shiwei; Chaudhuri, Soumilee; Han, Sang Won; Yi, Dahyun; Byun, Min Soo; Huang, Yen-Ning; Rosewood, Thea; Jung, Gijung; Kim, Min Jeong; Ahn, Hyejin; Lee, Jun-Young; Kim, Yu Kyeong; Cho, MinYoung; Bice, Paula J.; Craft, Hannah; Risacher, Shannon L.; Gao, Hongyu; Liu, Yunlong; Kim, SangYun; Park, Young Ho; Lee, Dong Young; Saykin, Andrew J.; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineIntroduction: Despite the recognized importance of including ethnic diversity in Alzheimer's disease (AD) research, substantial knowledge gaps remain, particularly in Asian populations. Methods: RNA sequencing was performed on blood samples from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) to perform differential gene expression (DGE), gene co-expression network, gene-set enrichment, and machine learning analyses for amyloid beta (Aβ) deposition on positron emission tomography. Results: DGE analysis identified 265 dysregulated genes associated with Aβ deposition and replicated three AD-associated genes in an independent Korean cohort. Network analysis identified two modules related to pathways including a natural killer (NK) cell-mediated immunity. Machine learning analysis showed the classification of Aβ positivity improved with the inclusion of gene expression data. Discussion: Our results in a Korean population suggest Aβ deposition-associated genes are enriched in NK cell-mediated immunity, providing a better understanding of AD molecular mechanisms and yielding potential diagnostic and therapeutic strategies. Highlights: Dysregulated genes were associated with amyloid beta (Aβ) deposition on positron emission tomography in a Korean cohort. Dysregulated genes in Alzheimer's disease were replicated in an independent Korean cohort. Gene network modules were associated with Aβ deposition. Natural killer (NK) cell proportion in blood was associated with Aβ deposition. Dysregulated genes were related to a NK cell-mediated immunity.Item Plasma miRNAs across the Alzheimer's disease continuum: Relationship to central biomarkers(Wiley, 2024) Liu, Shiwei; Park, Tamina; Krüger, Dennis M.; Pena-Centeno, Tonatiuh; Burkhardt, Susanne; Schutz, Anna-Lena; Huang, Yen-Ning; Rosewood, Thea; Chaudhuri, Soumilee; Cho, MinYoung; Risacher, Shannon L.; Wan, Yang; Shaw, Leslie M.; Sananbenesi, Farahnaz; Brodsky, Alexander S.; Lin, Honghuang; Krunic, Andre; Krzysztof Blusztajn, Jan; Saykin, Andrew J.; Delalle, Ivana; Fischer, Andre; Nho, Kwangsik; Alzheimer's Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: MicroRNAs (miRNAs) play important roles in gene expression regulation and Alzheimer's disease (AD) pathogenesis. Methods: We investigated the association between baseline plasma miRNAs and central AD biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 803): amyloid, tau, and neurodegeneration (A/T/N). Differentially expressed miRNAs and their targets were identified, followed by pathway enrichment analysis. Machine learning approaches were applied to investigate the role of miRNAs as blood biomarkers. Results: We identified nine, two, and eight miRNAs significantly associated with A/T/N positivity, respectively. We identified 271 genes targeted by amyloid-related miRNAs with estrogen signaling receptor-mediated signaling among the enriched pathways. Additionally, 220 genes targeted by neurodegeneration-related miRNAs showed enrichment in pathways including the insulin growth factor 1 pathway. The classification performance of demographic information for A/T/N positivity was increased up to 9% with the inclusion of miRNAs. Discussion: Plasma miRNAs were associated with central A/T/N biomarkers, highlighting their potential as blood biomarkers. Highlights: We performed association analysis of microRNAs (miRNAs) with amyloid/tau/neurodegeneration (A/T/N) biomarker positivity. We identified dysregulated miRNAs for A/T/N biomarker positivity. We identified Alzheimer's disease biomarker-specific/common pathways related to miRNAs. miRNAs improved the classification for A/T/N positivity by up to 9%. Our study highlights the potential of miRNAs as blood biomarkers.