- Browse by Author
Browsing by Author "Rosa-Neto, Pedro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN(medRxiv, 2024-08-09) Daniels, Alisha J.; McDade, Eric; Llibre-Guerra, Jorge J.; Xiong, Chengjie; Perrin, Richard J.; Ibanez, Laura; Supnet-Bell, Charlene; Cruchaga, Carlos; Goate, Alison; Renton, Alan E.; Benzinger, Tammie L. S.; Gordon, Brian A.; Hassenstab, Jason; Karch, Celeste; Popp, Brent; Levey, Allan; Morris, John; Buckles, Virginia; Allegri, Ricardo F.; Chrem, Patricio; Berman, Sarah B.; Chhatwal, Jasmeer P.; Farlow, Martin R.; Fox, Nick C.; Day, Gregory S.; Ikeuchi, Takeshi; Jucker, Mathias; Lee, Jae-Hong; Levin, Johannes; Lopera, Francisco; Takada, Leonel; Sosa, Ana Luisa; Martins, Ralph; Mori, Hiroshi; Noble, James M.; Salloway, Stephen; Huey, Edward; Rosa-Neto, Pedro; Sánchez-Valle, Raquel; Schofield, Peter R.; Roh, Jee Hoon; Bateman, Randall J.; Dominantly Inherited Alzheimer Network; Neurology, School of MedicineThis manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.Item The prevalence of tau‐PET positivity in aging and dementia(Wiley, 2025-01-09) Coomans, Emma M.; Groot, Colin; Rowe, Christopher C.; Dore, Vincent; Villemagne, Victor L.; van de Giessen, Elsmarieke; van der Flier, Wiesje M.; Pijnenburg, Yolande A. L.; Visser, Pieter Jelle; den Braber, Anouk; Pontecorvo, Michael; Shcherbinin, Sergey; Kennedy, Ian A.; Jagust, William J.; Baker, Suzanne L.; Harrison, Theresa M.; Gispert, Juan Domingo; Shekari, Mahnaz; Minguillon, Carolina; Smith, Ruben; Mattsson-Carlgren, Niklas; Palmqvist, Sebastian; Strandberg, Olof; Stomrud, Erik; Malpetti, Maura; O'Brien, John T.; Rowe, James B.; Jäger, Elena; Bischof, Gérard N.; Drzezga, Alexander; Garibotto, Valentina; Frisoni, Giovanni; Peretti, Débora Elisa; Schöll, Michael; Skoog, Ingmar; Kern, Silke; Sperling, Reisa A.; Johnson, Keith A.; Risacher, Shannon L.; Saykin, Andrew J.; Carrillo, Maria C.; Dickerson, Brad C.; Apostolova, Liana G.; Barthel, Henryk; Rullmann, Michael; Messerschmidt, Konstantin; Vandenberghe, Rik; Van Laere, Koen; Spruyt, Laure; Franzmeier, Nicolai; Brendel, Matthias; Gnörich, Johannes; Benzinger, Tammie L. S.; Lagarde, Julien; Sarazin, Marie; Bottlaender, Michel; Villeneuve, Sylvia; Poirier, Judes; Seo, Sang Won; Gu, Yuna; Kim, Jun Pyo; Mormino, Elizabeth; Young, Christina B.; Vossler, Hillary; Rosa-Neto, Pedro; Therriault, Joseph; Rahmouni, Nesrine; Coath, William; Cash, David M.; Schott, Jonathan M.; Rabinovici, Gil D.; La Joie, Renaud; Rosen, Howard J.; Johnson, Sterling C.; Christian, Bradley T.; Betthauser, Tobey J.; Hansson, Oskar; Ossenkoppele, Rik; Radiology and Imaging Sciences, School of MedicineBackground Tau‐PET imaging allows in‐vivo detection of neurofibrillary tangles. One tau‐PET tracer (i.e., [18F]flortaucipir) has received FDA‐approval for clinical use, and multiple other tau‐PET tracers have been implemented into clinical trials for participant selection and/or as a primary or secondary outcome measure. To optimize future use of tau‐PET, it is essential to understand how demographic, clinical and genetic factors affect tau‐PET‐positivity rates. Method This large‐scale multi‐center study includes 9713 participants from 35 cohorts worldwide who underwent tau‐PET with [18F]flortaucipir (n = 6420), [18F]RO948 (n = 1999), [18F]MK6240 (n = 878) or [18F]PI2620 (n = 416) (Table‐1). We analyzed individual‐level tau‐PET SUVR data using a cerebellar reference region that were processed either centrally (n = 3855) or by each cohort (n = 5858). We computed cohort‐specific SUVR thresholds based on the mean + 2 standard deviations in a temporal meta‐region of amyloid‐negative cognitively normal (CN) individuals aged >50. Logistic generalized estimating equations were used to estimate tau‐PET‐positivity probabilities, using an exchangeable correlation structure to account for within‐cohort correlations. Analyses were performed with (interactions between) age, amyloid‐status, and APOE‐e4 carriership as independent variables, stratified for syndrome diagnosis. Result The study included 5962 CN participants (7.5% tau‐PET‐positive), 1683 participants with mild cognitive impairment (MCI, 33.8% tau‐PET‐positive) and 2068 participants with a clinical diagnosis of dementia (62.1% tau‐PET‐positive) (Figure‐1). From age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity increased from 1.2% [95% CI: 0.9%‐1.5%] to 3.7% [2.3%‐5.1%] among CN amyloid‐negative participants; and from 16.4% [10.8%‐22.1%] to 20.5% [18.8%‐22.2%] among CN amyloid‐positive participants. Among amyloid‐negative participants with MCI and dementia, from age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity increased from 3.5% [1.6%‐5.3%] to 11.8% [7.1%‐16.5%] and from 12.6% [4.5%‐20.7%] to 15.9% [6.7%‐25.1%] respectively. In contrast, among amyloid‐positive participants with MCI and dementia, from age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity decreased from 66.5% [57.0%‐76.0%] to 48.3% [42.9%‐53.8%] and from 92.3% [88.7%‐95.9%] to 73.4% [67.5%‐79.3%] respectively. APOE‐e4 status primarily modulated the association of age with tau‐PET‐positivity estimates among CN and MCI amyloid‐positive participants (Figure‐2). Conclusion This large‐scale multi‐cohort study provides robust prevalence estimates of tau‐PET‐positivity, which can aid the interpretation of tau‐PET in the clinic and inform clinical trial designs.