- Browse by Author
Browsing by Author "Rocha, Luis M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Extraction of pharmacokinetic evidence of drug-drug interactions from the literature(PLoS, 2015-05-11) Kolchinsky, Artemy; Lourenço, Anália; Wu, Heng-Yi; Li, Lang; Rocha, Luis M.; Department of Medical and Molecular Genetics, IU School of MedicineDrug-drug interaction (DDI) is a major cause of morbidity and mortality and a subject of intense scientific interest. Biomedical literature mining can aid DDI research by extracting evidence for large numbers of potential interactions from published literature and clinical databases. Though DDI is investigated in domains ranging in scale from intracellular biochemistry to human populations, literature mining has not been used to extract specific types of experimental evidence, which are reported differently for distinct experimental goals. We focus on pharmacokinetic evidence for DDI, essential for identifying causal mechanisms of putative interactions and as input for further pharmacological and pharmacoepidemiology investigations. We used manually curated corpora of PubMed abstracts and annotated sentences to evaluate the efficacy of literature mining on two tasks: first, identifying PubMed abstracts containing pharmacokinetic evidence of DDIs; second, extracting sentences containing such evidence from abstracts. We implemented a text mining pipeline and evaluated it using several linear classifiers and a variety of feature transforms. The most important textual features in the abstract and sentence classification tasks were analyzed. We also investigated the performance benefits of using features derived from PubMed metadata fields, various publicly available named entity recognizers, and pharmacokinetic dictionaries. Several classifiers performed very well in distinguishing relevant and irrelevant abstracts (reaching F1≈0.93, MCC≈0.74, iAUC≈0.99) and sentences (F1≈0.76, MCC≈0.65, iAUC≈0.83). We found that word bigram features were important for achieving optimal classifier performance and that features derived from Medical Subject Headings (MeSH) terms significantly improved abstract classification. We also found that some drug-related named entity recognition tools and dictionaries led to slight but significant improvements, especially in classification of evidence sentences. Based on our thorough analysis of classifiers and feature transforms and the high classification performance achieved, we demonstrate that literature mining can aid DDI discovery by supporting automatic extraction of specific types of experimental evidence.Item Just In Time: Challenges and Opportunities of First Aid Care Information Sharing for Supporting Epileptic Seizure Response(Association for Computing Machinery, 2021) Min, Aehong; Miller, Wendy; Rocha, Luis M.; Börner, Katy; Brattig Correia, Rion; Shih, Patrick C.; School of NursingThere are over three million people living with epilepsy in the U.S. People with epilepsy experience multiple daily challenges such as seizures, social isolation, social stigma, experience of physical and emotional symptoms, medication side effects, cognitive and memory deficits, care coordination difficulties, and risks of sudden unexpected death. In this work, we report findings collected from 3 focus groups of 11 people with epilepsy and caregivers and 10 follow-up questionnaires. We found that these participants feel that most people do not know how to deal with seizures. To improve others’ abilities to respond safely and appropriately to someone having seizures, people with epilepsy and caregivers would like to share and educate the public about their epilepsy conditions, reduce common misconceptions about seizures and prevent associated stigma, and get first aid help from the public when needed. Considering social stigma, we propose design implications of future technologies for effective delivery of appropriate first aid care information to bystanders around individuals with epilepsy when they experience a seizure.Item MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES(eProceedings, 2016) Correia, Rion Brattig; Li, Lang; Rocha, Luis M.; Department of Medical and Molecular Genetics, IU School of MedicineMuch recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products-including cannabis-which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015.We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram contains much drug- and pathology specific data for public health monitoring of DDI and ADR, and that complex network analysis provides an important toolbox to extract health-related associations and their support from large-scale social media data.Item Small cohort of patients with epilepsy showed increased activity on Facebook before sudden unexpected death(Elsevier, 2022-03) Wood, Ian B.; Correia, Rion Brattig; Miller, Wendy R.; Rocha, Luis M.; School of NursingSudden Unexpected Death in Epilepsy (SUDEP) remains a leading cause of death in people with epilepsy. Despite the constant risk for patients and bereavement to family members, to date the physiological mechanisms of SUDEP remain unknown. Here we explore the potential to identify putative predictive signals of SUDEP from online digital behavioral data using text and sentiment analysis tools. Specifically, we analyze Facebook timelines of six patients with epilepsy deceased due to SUDEP, donated by surviving family members. We find preliminary evidence for behavioral changes detectable by text and sentiment analysis tools. Namely, in the months preceding their SUDEP event patient social media timelines show: i) increase in verbosity; ii) increased use of functional words; and iii) sentiment shifts as measured by different sentiment analysis tools. Combined, these results suggest that social media engagement, as well as its sentiment, may serve as possible early-warning signals for SUDEP in people with epilepsy. While the small sample of patient timelines analyzed in this study prevents generalization, our preliminary investigation demonstrates the potential of social media data as complementary data in larger studies of SUDEP and epilepsy.