- Browse by Author
Browsing by Author "Richardson, Rose"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Detection of tau in Gerstmann-Sträussler-Scheinker disease (PRNP F198S) by [18F]Flortaucipir PET(Biomed Central, 2018-10-29) Risacher, Shannon L.; Farlow, Martin R.; Bateman, Daniel R.; Epperson, Francine; Tallman, Eileen F.; Richardson, Rose; Murrell, Jill R.; Unverzagt, Frederick W.; Apostolova, Liana G.; Bonnin, Jose M.; Ghetti, Bernardino; Saykin, Andrew J.; Radiology and Imaging Sciences, School of MedicineThis study aimed to determine the pattern of [18F]flortaucipir uptake in individuals affected by Gerstmann-Sträussler-Scheinker disease (GSS) associated with the PRNP F198S mutation. The aims were to: 1) determine the pattern of [18F]flortaucipir uptake in two GSS patients; 2) compare tau distribution by [18F]flortaucipir PET imaging among three groups: two GSS patients, two early onset Alzheimer's disease patients (EOAD), two cognitively normal older adults (CN); 3) validate the PET imaging by comparing the pattern of [18F]flortaucipir uptake, in vivo, with that of tau neuropathology, post-mortem. Scans were processed to generate standardized uptake value ratio (SUVR) images. Regional [18F]flortaucipir SUVR was extracted and compared between GSS patients, EOADs, and CNs. Neuropathology and tau immunohistochemistry were carried out post-mortem on a GSS patient who died 9 months after the [18F]flortaucipir scan. The GSS patients were at different stages of disease progression. Patient A was mildly to moderately affected, suffering from cognitive, psychiatric, and ataxia symptoms. Patient B was moderately to severely affected, suffering from ataxia and parkinsonism accompanied by psychiatric and cognitive symptoms. The [18F]flortaucipir scans showed uptake in frontal, cingulate, and insular cortices, as well as in the striatum and thalamus. Uptake was greater in Patient B than in Patient A. Both GSS patients showed greater uptake in the striatum and thalamus than the EOADs and greater uptake in all evaluated regions than the CNs. Thioflavin S fluorescence and immunohistochemistry revealed that the anatomical distribution of tau pathology is consistent with that of [18F]flortaucipir uptake. In GSS patients, the neuroanatomical localization of pathologic tau, as detected by [18F]flortaucipir, suggests correlation with the psychiatric, motor, and cognitive symptoms. The topography of uptake in PRNP F198S GSS is strikingly different from that seen in AD. Further studies of the sensitivity, specificity, and anatomical patterns of tau PET in diseases with tau pathology are warranted.Item Diffuse Lewy Body Disease and Alzheimer Disease: Neuropathologic Phenotype Associated With the PSEN1 p.A396T Mutation(Oxford, 2019-06-05) Gondim, Dibson D; Oblak, Adrian; Murrell, Jill R; Richardson, Rose; Epperson, Francine; Ross, Owen A; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineIn sporadic and dominantly inherited Alzheimer disease (AD), aggregation of both tau and α-synuclein may occur in neurons. Aggregates of either protein occur separately or coexist in the same neuron. It is not known whether the coaggregation of tau and α-synuclein in dominantly inherited AD occurs in association with specific mutations of the APP, PSEN1, or PSEN2 genes. The aim of this study was to provide the first characterization of the neuropathologic phenotype associated with the PSEN1 p.A396T mutation in a man who was clinically diagnosed as having AD, but for whom the PSEN1 mutation was found postmortem. The proband, who was 56 years old when cognitive impairment first manifested, died at 67 years of age. Neuropathologically, 3 proteinopathies were present in the brain. Widespread α-synuclein-immunopositive neuronal inclusions suggested a diagnosis of diffuse Lewy body disease (DLBD), while severe and widespread tau and amyloid-β pathologies confirmed the clinical diagnosis of AD. Immunohistochemistry revealed the coexistence of tau and α-synuclein aggregates in the same neuron. Neuropathologic and molecular studies in brains of carriers of the PSEN1 p.A396T mutation or other PSEN1 or PSEN2 mutations associated with the coexistence of DLBD and AD are needed to clarify whether tau and α-synuclein proteinopathies occur independently or whether a relationship exists between α-synuclein and tau that might explain the mechanisms of coaggregation.