- Browse by Author
Browsing by Author "Richards, Nigel G. J."
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item 3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase(Springer Nature, 2024-12-03) Coricello, Adriana; Nardone, Alanya J.; Lupia, Antonio; Gratteri, Carmen; Vos, Matthijn; Chaptal, Vincent; Alcaro, Stefano; Zhu, Wen; Takagi, Yuichiro; Richards, Nigel G. J.; Biochemistry and Molecular Biology, School of MedicineAdvances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings. Combining 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.Item Assessing the Influence of Mutation on GTPase Transition States by Using X‐ray Crystallography, 19F NMR, and DFT Approaches(Wiley, 2017-08-07) Jin, Yi; Molt, Robert W.; Pellegrini, Erika; Cliff, Matthew J.; Bowler, Matthew W.; Richards, Nigel G. J.; Blackburn, G. Michael; Waltho, Jonathan P.; Biochemistry and Molecular Biology, School of MedicineWe report X‐ray crystallographic and 19F NMR studies of the G‐protein RhoA complexed with MgF3 −, GDP, and RhoGAP, which has the mutation Arg85′Ala. When combined with DFT calculations, these data permit the identification of changes in transition state (TS) properties. The X‐ray data show how Tyr34 maintains solvent exclusion and the core H‐bond network in the active site by relocating to replace the missing Arg85′ sidechain. The 19F NMR data show deshielding effects that indicate the main function of Arg85′ is electronic polarization of the transferring phosphoryl group, primarily mediated by H‐bonding to O3G and thence to PG. DFT calculations identify electron‐density redistribution and pinpoint why the TS for guanosine 5′‐triphosphate (GTP) hydrolysis is higher in energy when RhoA is complexed with RhoGAPArg85′Ala relative to wild‐type (WT) RhoGAP. This study demonstrates that 19F NMR measurements, in combination with X‐ray crystallography and DFT calculations, can reliably dissect the response of small GTPases to site‐specific modifications.Item Assigning the EPR Fine Structure Parameters of the Mn(II) Centers in Bacillus subtilis Oxalate Decarboxylase by Site-Directed Mutagenesis and DFT/MM Calculations(American Chemical Society, 2014-02-12) Campomanes, Pablo; Kellett, Whitney F.; Easthon, Lindsey M.; Ozarowski, Andrew; Allen, Karen N.; Angerhofer, Alexander; Rothlisberger, Ursula; Richards, Nigel G. J.; Department of Chemistry & Chemical Biology, School of ScienceOxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. EPR-based strategies for investigating the catalytic mechanism of decarboxylation are complicated by the difficulty of assigning the signals associated with the two Mn(II) centers located in the N- and C-terminal cupin domains of the enzyme. We now report a mutational strategy that has established the assignment of EPR fine structure parameters to each of these Mn(II) centers at pH 8.5. These experimental findings are also used to assess the performance of a multistep strategy for calculating the zero-field splitting parameters of protein-bound Mn(II) ions. Despite the known sensitivity of calculated D and E values to the computational approach, we demonstrate that good estimates of these parameters can be obtained using cluster models taken from carefully optimized DFT/MM structures. Overall, our results provide new insights into the strengths and limitations of theoretical methods for understanding electronic properties of protein-bound Mn(II) ions, thereby setting the stage for future EPR studies on the electronic properties of the Mn(II) centers in OxDC and site-specific variants.Item Building better enzymes: Molecular basis of improved non‐natural nucleobase incorporation by an evolved DNA polymerase(Wiley, 2020-02) Ouaray, Zahra; Singh, Isha; Georgiadis, Millie M.; Richards, Nigel G. J.; Biochemistry and Molecular Biology, School of MedicineObtaining semisynthetic microorganisms that exploit the information density of “hachimoji” DNA requires access to engineered DNA polymerases. A KlenTaq variant has been reported that incorporates the “hachimoji” P:Z nucleobase pair with a similar efficiency to that seen for Watson–Crick nucleobase incorporation by the wild type (WT) KlenTaq DNA polymerase. The variant polymerase differs from WT KlenTaq by only four amino acid substitutions, none of which are located within the active site. We now report molecular dynamics (MD) simulations on a series of binary complexes aimed at elucidating the contributions of the four amino acid substitutions to altered catalytic activity. These simulations suggest that WT KlenTaq is insufficiently flexible to be able to bind AEGIS DNA correctly, leading to the loss of key protein/DNA interactions needed to position the binary complex for efficient incorporation of the “hachimoji” Z nucleobase. In addition, we test literature hypotheses about the functional roles of each amino acid substitution and provide a molecular description of how individual residue changes contribute to the improved activity of the KlenTaq variant. We demonstrate that MD simulations have a clear role to play in systematically screening DNA polymerase variants capable of incorporating different types of nonnatural nucleobases thereby limiting the number that need to be characterized by experiment. It is now possible to build DNA molecules containing nonnatural nucleobase pairs in addition to A:T and G:C. Exploiting this development in synthetic biology requires engineered DNA polymerases that can replicate nonnatural nucleobase pairs. Computational studies on a DNA polymerase variant reveal how amino acid substitutions outside of the active site yield an enzyme that replicates nonnatural nucleobase pairs with high efficiency. This work will facilitate efforts to obtain bacteria possessing an expanded genetic alphabet.Item Building better polymerases: Engineering the replication of expanded genetic alphabets(Elsevier, 2020-12-11) Ouaray, Zahra; Benner, Steven A.; Georgiadis, Millie M.; Richards, Nigel G. J.; Biochemistry and Molecular Biology, School of MedicineDNA polymerases are today used throughout scientific research, biotechnology, and medicine, in part for their ability to interact with unnatural forms of DNA created by synthetic biologists. Here especially, natural DNA polymerases often do not have the "performance specifications" needed for transformative technologies. This creates a need for science-guided rational (or semi-rational) engineering to identify variants that replicate unnatural base pairs (UBPs), unnatural backbones, tags, or other evolutionarily novel features of unnatural DNA. In this review, we provide a brief overview of the chemistry and properties of replicative DNA polymerases and their evolved variants, focusing on the Klenow fragment of Taq DNA polymerase (Klentaq). We describe comparative structural, enzymatic, and molecular dynamics studies of WT and Klentaq variants, complexed with natural or noncanonical substrates. Combining these methods provides insight into how specific amino acid substitutions distant from the active site in a Klentaq DNA polymerase variant (ZP Klentaq) contribute to its ability to replicate UBPs with improved efficiency compared with Klentaq. This approach can therefore serve to guide any future rational engineering of replicative DNA polymerases.Item Consecutive non-natural PZ nucleobase pairs in DNA impact helical structure as seen in 50 μs molecular dynamics simulations(Oxford University Press, 2017-04-20) Molt, Robert W.; Georgiadis, Millie M.; Richards, Nigel G. J.; Department of Biochemistry and Molecular Biology, School of MedicineZ: Little is known about the influence of multiple consecutive 'non-standard' ( , 6-amino-5-nitro-2(1H)-pyridone, and , 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one) nucleobase pairs on the structural parameters of duplex DNA. nucleobase pairs follow standard rules for Watson-Crick base pairing but have rearranged hydrogen bonding donor and acceptor groups. Using the X-ray crystal structure as a starting point, we have modeled the motions of a DNA duplex built from a self-complementary oligonucleotide (5΄-CTTATPPPZZZATAAG-3΄) in water over a period of 50 μs and calculated DNA local parameters, step parameters, helix parameters, and major/minor groove widths to examine how the presence of multiple, consecutive nucleobase pairs might impact helical structure. In these simulations, the -containing DNA duplex exhibits a significantly wider major groove and greater average values of stagger, slide, rise, twist and h-rise than observed for a 'control' oligonucleotide in which nucleobase pairs are replaced by . The molecular origins of these structural changes are likely associated with at least two differences between and . First, the electrostatic properties of differ from in terms of density distribution and dipole moment. Second, differences are seen in the base stacking of pairs in dinucleotide steps, arising from energetically favorable stacking of the nitro group in with π-electrons of the adjacent base.Item Cryo-EM and Molecular Dynamics Simulations Reveal Hidden Conformational Dynamics Controlling Ammonia Transport in Human Asparagine Synthetase(bioRxiv, 2023-05-16) Coricello, Adriana; Zhu, Wen; Lupia, Antonio; Gratteri, Carmen; Vos, Matthijn; Chaptal, Vincent; Alcaro, Stefano; Takagi, Yuichiro; Richards, Nigel G. J.; Biochemistry and Molecular Biology, School of MedicineHow dynamical motions in enzymes might be linked to catalytic function is of significant general interest, although almost all relevant experimental data, to date, has been obtained for enzymes with a single active site. Recent advances in X-ray crystallography and cryogenic electron microscopy offer the promise of elucidating dynamical motions for proteins that are not amenable to study using solution-phase NMR methods. Here we use 3D variability analysis (3DVA) of an EM structure for human asparagine synthetase (ASNS) in combination with atomistic molecular dynamics (MD) simulations to detail how dynamic motions of a single side chain mediates interconversion of the open and closed forms of a catalytically relevant intramolecular tunnel, thereby regulating catalytic function. Our 3DVA results are consistent with those obtained independently from MD simulations, which further suggest that formation of a key reaction intermediate acts to stabilize the open form of the tunnel in ASNS to permit ammonia translocation and asparagine formation. This conformational selection mechanism for regulating ammonia transfer in human ASNS contrasts sharply with those employed in other glutamine-dependent amidotransferases that possess a homologous glutaminase domain. Our work illustrates the power of cryo-EM to identify localized conformational changes and hence dissect the conformational landscape of large proteins. When combined with MD simulations, 3DVA is a powerful approach to understanding how conformational dynamics regulate function in metabolic enzymes with multiple active sites.Item High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity(Springer Nature, 2019-09-17) Zhu, Wen; Radadiya, Ashish; Bisson, Claudine; Wenzel, Sabine; Nordin, Brian E.; Martínez-Márquez, Francisco; Imasaki, Tsuyoshi; Sedelnikova, Svetlana E.; Coricello, Adriana; Baumann, Patrick; Berry, Alexandria H.; Nomanbhoy, Tyzoon K.; Kozarich, John W.; Jin, Yi; Rice, David W.; Takagi, Yuichiro; Richards, Nigel G. J.; Biochemistry and Molecular Biology, School of MedicineExpression of human asparagine synthetase (ASNS) promotes metastatic progression and tumor cell invasiveness in colorectal and breast cancer, presumably by altering cellular levels of L-asparagine. Human ASNS is therefore emerging as a bona fide drug target for cancer therapy. Here we show that a slow-onset, tight binding inhibitor, which exhibits nanomolar affinity for human ASNS in vitro, exhibits excellent selectivity at 10 μM concentration in HCT-116 cell lysates with almost no off-target binding. The high-resolution (1.85 Å) crystal structure of human ASNS has enabled us to identify a cluster of negatively charged side chains in the synthetase domain that plays a key role in inhibitor binding. Comparing this structure with those of evolutionarily related AMP-forming enzymes provides insights into intermolecular interactions that give rise to the observed binding selectivity. Our findings demonstrate the feasibility of developing second generation human ASNS inhibitors as lead compounds for the discovery of drugs against metastasis.Item How to name atoms in phosphates, polyphosphates, their derivatives and mimics, and transition state analogues for enzyme-catalysed phosphoryl transfer reactions (IUPAC Recommendations 2016)(De Gruyter, 2017-05) Blackburn, G. Michael; Cherfils, Jacqueline; Moss, Gerard P.; Richards, Nigel G. J.; Waltho, Jonathan P.; Williams, Nicholas H.; Wittinghofer, Alfred; Chemistry and Chemical Biology, School of ScienceProcedures are proposed for the naming of individual atoms, P, O, F, N, and S in phosphate esters, amidates, thiophosphates, polyphosphates, their mimics, and analogues of transition states for enzyme-catalyzed phosphoryl transfer reactions. Their purpose is to enable scientists in very different fields, e.g. biochemistry, biophysics, chemistry, computational chemistry, crystallography, and molecular biology, to share standard protocols for the labelling of individual atoms in complex molecules. This will facilitate clear and unambiguous descriptions of structural results, as well as scientific intercommunication concerning them. At the present time, perusal of the Protein Data Bank (PDB) and other sources shows that there is a limited degree of commonality in nomenclature, but a large measure of irregularity in more complex structures. The recommendations described here adhere to established practice as closely as possible, in particular to IUPAC and IUBMB recommendations and to “best practice” in the PDB, especially to its atom labelling of amino acids, and particularly to Cahn-Ingold-Prelog rules for stereochemical nomenclature. They are designed to work in complex enzyme sites for binding phosphates but also to have utility for non-enzymatic systems. Above all, the recommendations are designed to be easy to comprehend and user-friendly.Item A Mechanochemical Switch to Control Radical Intermediates(American Chemical Society, 2014-06-17) Brunk, Elizabeth; Kellett, Whitney F.; Richards, Nigel G. J.; Rothlisberger, Ursula; Department of Chemistry & Chemical Biology, School of ScienceB12-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB12-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is “off”, the 5′-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch “on,” the enzyme environment becomes the driving force to impose a distinct conformation of the 5′-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions.