- Browse by Author
Browsing by Author "Reyes-Dumeyer, Dolly"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item A multiethnic transcriptome for Alzheimer Disease identifies cross‐ancestry and ancestry‐specific expression profiles(Wiley, 2025-01-03) Yang, Zikun; Cieza, Basilio; Reyes-Dumeyer, Dolly; Lee, Annie J.; Dugger, Brittany N.; Jin, Lee-Way; Murray, Melissa E.; Dickson, Dennis W.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Foroud, Tatiana M.; Teich, Andrew F.; Mayeux, Richard; Tosto, Giuseppe; Neurology, School of MedicineBackground: Alzheimer’s Disease (AD) presents complex molecular heterogeneity, influenced by a variety of factors including heterogeneous phenotypic, genetic, and neuropathologic presentations. Regulation of gene expression mechanisms is a primary interest of investigations aiming to uncover the underlying disease mechanisms and progression. Method: We generated bulk RNA‐sequencing in prefrontal cortex from 565 AD brain samples (non‐Hispanic Whites, n = 399; Hispanics, n = 113; African American, n = 12) across six U.S. brain banks, and conducted differential gene expression and enrichment analyses. We sought to identify cross‐ancestry and ancestry‐specific differentially expressed genes (DEG) and pathways across Braak stages, adjusting for sex, age at death, and RNA quality metrics. We validated our findings using the Religious Orders Study/Memory and Aging Project study (ROS/MAP, n = 1,095). Lastly, we validated top DEG using publically‐available human single‐nucleus RNA sequencing (snRNAseq) data. Result: AD‐known genes VGF (LFC = ‐0.661, padj = 3.78) and ADAMTS2 (padj = 1.21) were consistently differentially expressed across statistical models, ethnic groups, and replicated in ROS/MAP (Figure 1). Genes from the heat shock protein (HSP) family, e.g. HSPB7 (padj = 3.78), were the top DEG, also replicated in ROS/MAP. Ethnic‐stratified analyses prioritized TNFSF14 and SPOCD1 as top DEG in Hispanic samples. Gene set enrichment analysis highlighted several significantly pathways, including “TYROBP causal network in microglia” (WP3945; padj = 1.68) and “Alzheimer Disease” (WP5124; padj = 4.24). snRNAseq validated several DEG, including VGF downregulated in neurons (padj = 1.1). Conclusion: To our knowledge, this is the largest diverse transcriptome study for AD in post‐mortem tissue. We identified perturbated genes and pathways resulting in cross‐ethnic and ethnic‐specific findings, ultimately highlighting the importance of diversity in AD investigations.Item Asian Cohort for Alzheimer's Disease (ACAD) pilot study on genetic and non-genetic risk factors for Alzheimer's disease among Asian Americans and Canadians(Wiley, 2024) Ho, Pei-Chuan; Yu, Wai Haung; Tee, Boon Lead; Lee, Wan-Ping; Li, Clara; Gu, Yian; Yokoyama, Jennifer S.; Reyes-Dumeyer, Dolly; Choi, Yun-Beom; Yang, Hyun-Sik; Vardarajan, Badri N.; Tzuang, Marian; Lieu, Kevin; Lu, Anna; Faber, Kelley M.; Potter, Zoë D.; Revta, Carolyn; Kirsch, Maureen; McCallum, Jake; Mei, Diana; Booth, Briana; Cantwell, Laura B.; Chen, Fangcong; Chou, Sephera; Clark, Dewi; Deng, Michelle; Hong, Ting Hei; Hwang, Ling-Jen; Jiang, Lilly; Joo, Yoonmee; Kang, Younhee; Kim, Ellen S.; Kim, Hoowon; Kim, Kyungmin; Kuzma, Amanda B.; Lam, Eleanor; Lanata, Serggio C.; Lee, Kunho; Li, Donghe; Li, Mingyao; Li, Xiang; Liu, Chia-Lun; Liu, Collin; Liu, Linghsi; Lupo, Jody-Lynn; Nguyen, Khai; Pfleuger, Shannon E.; Qian, James; Qian, Winnie; Ramirez, Veronica; Russ, Kristen A.; Seo, Eun Hyun; Song, Yeunjoo E.; Tartaglia, Maria Carmela; Tian, Lu; Torres, Mina; Vo, Namkhue; Wong, Ellen C.; Xie, Yuan; Yau, Eugene B.; Yi, Isabelle; Yu, Victoria; Zeng, Xiaoyi; St. George-Hyslop, Peter; Au, Rhoda; Schellenberg, Gerard D.; Dage, Jeffrey L.; Varma, Rohit; Hsiung, Ging-Yuek R.; Rosen, Howard; Henderson, Victor W.; Foroud, Tatiana; Kukull, Walter A.; Peavy, Guerry M.; Lee, Haeok; Feldman, Howard H.; Mayeux, Richard; Chui, Helena; Jun, Gyungah R.; Ta Park, Van M.; Chow, Tiffany W.; Wang, Li-San; Medical and Molecular Genetics, School of MedicineIntroduction: Clinical research in Alzheimer's disease (AD) lacks cohort diversity despite being a global health crisis. The Asian Cohort for Alzheimer's Disease (ACAD) was formed to address underrepresentation of Asians in research, and limited understanding of how genetics and non-genetic/lifestyle factors impact this multi-ethnic population. Methods: The ACAD started fully recruiting in October 2021 with one central coordination site, eight recruitment sites, and two analysis sites. We developed a comprehensive study protocol for outreach and recruitment, an extensive data collection packet, and a centralized data management system, in English, Chinese, Korean, and Vietnamese. Results: ACAD has recruited 606 participants with an additional 900 expressing interest in enrollment since program inception. Discussion: ACAD's traction indicates the feasibility of recruiting Asians for clinical research to enhance understanding of AD risk factors. ACAD will recruit > 5000 participants to identify genetic and non-genetic/lifestyle AD risk factors, establish blood biomarker levels for AD diagnosis, and facilitate clinical trial readiness. Highlights: The Asian Cohort for Alzheimer's Disease (ACAD) promotes awareness of under-investment in clinical research for Asians. We are recruiting Asian Americans and Canadians for novel insights into Alzheimer's disease. We describe culturally appropriate recruitment strategies and data collection protocol. ACAD addresses challenges of recruitment from heterogeneous Asian subcommunities. We aim to implement a successful recruitment program that enrolls across three Asian subcommunities.Item Asian Cohort for Alzheimer’s Disease (ACAD) Study on Genetic and Non‐Genetic Risk Factors for Alzheimer’s Disease among Asian Americans and Canadians(Wiley, 2025-01-09) Wang, Li-San; Ho, Pei-Chuan; Tee, Boon Lead; Li, Clara; Gu, Yian; Yokoyama, Jennifer S.; Reyes-Dumeyer, Dolly; Faber, Kelley M.; Lee, Wan-Ping; Song, Yeunjoo E.; Tzuang, Marian; Vardarajan, Badri N.; Yang, Hyun-Sik; Choi, Yun-Beom; Feldman, Howard H.; Grill, Joshua D.; Henderson, Victor W.; Hsiung, Ging-Yuek Robin; Mayeux, Richard; Rosen, Howard J.; Varma, Rohit; Foroud, Tatiana M.; Kukull, Walter A.; Peavy, Guerry M.; Lee, Haeok; Yu, W. Haung; Chui, Helena C.; Jun, Gyungah R.; Park, Van Ta; Chow, Tiffany W.; The Asian Cohort for Alzheimer’s Disease Study; Medicine, School of MedicineBackground: Asian Americans and Asian Canadians (ASACs) are the fastest growing minority group in the US and Canada. However, ASACs are under‐sampled in Alzheimer’s disease (AD) research. To address the need of culturally appropriate clinical protocols and community‐based recruitment approaches for ASACs, the Asian Cohort for Alzheimer’s Disease (ACAD), the first large dementia genetics cohort focusing on Chinese, Korean, and Vietnamese, launched in 2021 to examine genetic and non‐genetic risk factors for AD among ASACs. Our clinical and community‐based participatory research (CPBR) scientists have a long collaborative history and diverse cultural and scientific training backgrounds: both are critical in leading AD and CBPR research. Method: Upon receipt of an NIA U19 grant in 2023, ACAD has expanded to 9 recruiting sites (7 US and 2 Canadian), a coordinating site, and an analysis site with a centralized data management system. ACAD developed a comprehensive study protocol including community outreach and recruitment strategies, the data collection packet (DCP), pre‐screening and sample collection procedures, and in English, Chinese (Mandarin and Cantonese), Korean, and Vietnamese. To ensure consistency, ACAD implemented a training curriculum for data/sample collect and for culturally appropriate recruitment approaches in collaboration with community partners, clinics, and nursing homes serving Asian communities. Result: As of December 2023, more than 2,400 people expressed interests in ACAD. A total of 683 of the 899 consented participants completed DCP data into the REDCap (604 Chinese, 54 Korean, and 25 Vietnamese), while 399 saliva samples and 285 blood samples were received. Participants aged 60 –103 years at enrollment, 67% were female, and 47% reported having a college or above education. Currently, ACAD is revising the study protocol in response to feedback received in its pilot phase, including the need to include additional neuropsychological tests and cultural tailored lifestyle questionnaires with an emphasis on immigration experiences. Conclusion: The ACAD team (including community partners) have learned valuable lessons and demonstrated the feasibility of recruiting ASACs in clinical research. With an expansion plan and in collaboration with other AD research focuses on racial minority populations, insights from ACAD may identify potential novel, population‐specific therapeutic pathways for AD.Item Beyond GWAS: Investigating Structural Variants and Their Segregation in Familial Alzheimer’s Disease(Wiley, 2025-01-09) Gunasekaran, Tamil Iniyan; Reyes-Dumeyer, Dolly; Corvelo, André; Clarke, Wayne E.; Evani, Uday S.; Byrska-Bishop, Marta S.; Basile, Anna O.; Runnels, Alexi; Musunuri, Rajeeva O.; Narzisi, Giuseppe; Faber, Kelley M.; Goate, Alison M.; Boeve, Brad F.; Cruchaga, Carlos; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Rosenberg, Roger N.; Tsuang, Debby W.; Rivera Mejia, Diones; Medrano, Martin; Lantigua, Rafael A.; Sweet, Robert; Bennett, David A.; Wilson, Robert S.; Foroud, Tatiana M.; Dalgard, Clifton L.; Mayeux, Richard; Zody, Michael; Vardarajan, Badri N.; Medical and Molecular Genetics, School of MedicineBackground: Late‐Onset Alzheimer’s Disease (LOAD) is characterized by genetic heterogeneity and there is no single model explaining the genetic mode of inheritance. To date, more than 70 genetic loci associated with AD have been identified but they explain only a small proportion of AD heritability. Structural variants (SVs) may explain some of the missing AD heritability, and specifically, their segregation in AD families has yet to be investigated. Method: We analyzed WGS data from 197 NHW families (926 subjects, 58.5% affected) and 214 CH families (1,340 subjects, 59.17% affected). Manta, Absinthe, and MELT were used for large insertions/deletions calling from short‐read WGS, combined with Sniffles2 calls from 4 ONT‐sequenced genomes and an external SV call set from HGSVC on 32 PacBio‐sequenced genomes from the 1000 Genomes Project. Genotyping produced a unified project‐level VCF. We identified 45,251 insertions and 76,566 deletions genome‐wide. Variants were tested for segregation and pathogenicity using Annot‐SV, cadd‐SV, and Variant Effect Predictor. Segregation required SV presence in all affected family members and only in unaffected members five years younger than average disease onset. Result: We identified 453 insertions and 598 deletions segregating in 78.68% and 87.31% of NHW families, respectively. In CH families, 432 insertions and 460 deletions were segregating in 75.23% and 72.90% of the families, respectively. Genes overlapping with the SVs exhibited high expression levels in brain tissues. Notably, around 93% of insertions and 76% of deletions segregating in NHW and CH families were less than 1 kilobase pair (1kbp) in length. A total of 79 insertions and 96 deletions were found to be segregating in both NHW and CH families. Interestingly, a segregating insertion was observed in CH families overlapping within the CACNA2D3 gene, which was previously reported in a CH GWAS for clinical AD. A deletion segregating in NHW overlapped with the PSEN1, and another in a CH family overlapped with the PTK2B gene. Conclusion: Our findings suggested that there are several SVs associated with familial AD across CH and NHW families. Prioritizing the SVs based on their effects on gene function and expression will be helpful in understanding their contributions in AD.Item Blood‐Based Biomarkers to Aid in Alzheimer’s Disease Prediction or Diagnosis: Analysis in a Multi‐Ethnic Cohort Study(Wiley, 2025-01-03) Bahl, Aanya; Honig, Lawrence S.; Kang, Min Suk; Sanchez, Danurys; Reyes-Dumeyer, Dolly; Manly, Jennifer J.; Lantigua, Rafael A.; Dage, Jeffrey L.; Brickman, Adam M.; Vardarajan, Badri N.; Mayeux, Richard; Gu, Yian; Neurology, School of MedicineBackground: Blood‐based biomarkers may aid in the diagnosis of Alzheimer’s Disease (AD), but their contribution may be confounded by the presence of multiple chronic conditions and have not been well‐tested in community populations. In the current study, we aimed to determine whether blood‐based biomarkers can aid in refining a multi‐ethnic, urban clinically diagnosed AD community‐based cohort. Method: We included 546 individuals in the Washington Heights, Hamilton Heights, and Inwood Columbia Aging Project (WHICAP) study in this cross‐sectional study. Six biomarkers, including phosphorylated‐tau‐181 (P‐tau181), total (T‐tau), amyloid‐beta 40 and 42 (Aβ40, Aβ42), Glial Fibrillary Acid Protein (GFAP), and Neurofilament Light Chain (NfL) were measured using Quanterix SIMOA HD‐X platforms. The association between the biomarkers and AD or cognitive impairment was tested using logistic regression, adjusted for age, sex, ethnic group, and years of education. Individuals were subsequently characterized as ‘biomarker positive’ or ‘biomarker negative’ based on combined GFAP and P‐tau181/Aβ42 cut scores. Result: The mean age of individuals was 79.3 years (6.56) and 379 (69.4%) were women, 133 (24.48%), were Non‐Hispanic Black, 153 (28.0%) Non‐Hispanic White, and 248 (45.4%) were Hispanic. A clinical diagnosis of AD was made in 129 (25.49%) individuals. Low Aβ42 (OR = 0.18, [95% CI: 0.04 ‐ 0.92]), low Aβ42/Aβ40 (OR = 0.49, [95% CI: 0.228 ‐ 0.872), and high P‐tau181/Ab42 (OR = 5.494, [95% CI: 1.523 – 20.416]) were associated with a clinical diagnosis of AD suggesting a role as predictive biomarkers. However, the best combination, GFAP and P‐tau181/Aβ42 cut scores, yielded a sensitivity of 41% and specificity of 70.5% for clinically diagnosed AD. The concordance was 54.5% and the discordance was present in both directions. Low education, cardiovascular and other comorbidities might contribute to the discrepancy between biomarker positivity and clinical diagnosis. Conclusion: While GFAP and P‐tau181/Aβ42 levels are associated with AD pathology and can aid in the diagnosis of AD, the presence of multiple chronic conditions may lead to either false positives or negatives. Large multi‐ethnic community cohort studies are needed to further examine the utility of these biomarkers in aiding in the clinical diagnosis of AD.Item Correlation of plasma and neuroimaging biomarkers in Alzheimer’s disease(Wiley, 2022) Brickman, Adam M.; Manly, Jennifer J.; Honig, Lawrence S.; Sanchez, Danurys; Reyes-Dumeyer, Dolly; Lantigua, Rafael A.; Vonsattel, Jean Paul; Teich, Andrew F.; Kang, Min Suk; Dage, Jeffrey L.; Mayeux, Richard; Neurology, School of MedicineBlood-based phosphorylated tau (Ptau) 181 and 217 biomarkers are sensitive and specific for Alzheimer's disease. In this racial/ethnically diverse cohort study, participants were classified as biomarker positive (Ptau+) or negative (Ptau-) based on Ptau 181 and 217 concentrations and as cognitively impaired (Sym) or unimpaired (Asym). The four groups, Ptau-/Asym, Ptau+/Asym, Ptau-/Sym, and Ptau+/Sym, differed by age, APOE-4 allele frequency, total tau, neurofilament light chain, and cortical thickness measured by MRI. Our results add to increasing evidence that plasma Ptau 181 and 217 concentrations are valid Alzheimer's disease biomarkers in diverse populations.Item Evaluation of Plasma Biomarkers for A/T/N Classification of Alzheimer Disease Among Adults of Caribbean Hispanic Ethnicity(American Medical Association, 2023-04-03) Honig, Lawrence S.; Kang, Min Suk; Lee, Annie J.; Reyes-Dumeyer, Dolly; Piriz, Angel; Soriano, Belisa; Franco, Yahaira; Dominguez Coronado, Zoraida; Recio, Patricia; Rivera Mejía, Diones; Medrano, Martin; Lantigua, Rafael A.; Teich, Andrew F.; Dage, Jeffrey L.; Mayeux, Richard; Neurology, School of MedicineImportance: Cerebrospinal fluid (CSF) and plasma biomarkers can detect biological evidence of Alzheimer disease (AD), but their use in low-resource environments and among minority ethnic groups is limited. Objective: To assess validated plasma biomarkers for AD among adults of Caribbean Hispanic ethnicity. Design, setting, and participants: In this decision analytical modeling study, adults were recruited between January 1, 2018, and April 30, 2022, and underwent detailed clinical assessments and venipuncture. A subsample of participants also consented to lumbar puncture. Established CSF cut points were used to define AD biomarker-positive status, allowing determination of optimal cut points for plasma biomarkers in the same individuals. The performance of a panel of 6 plasma biomarkers was then assessed with respect to the entire group. Data analysis was performed in January 2023. Main outcomes and measures: Main outcomes were the association of plasma biomarkers amyloid-β 1-42 (Aβ42), amyloid-β 1-40 (Aβ40), total tau (T-tau), phosphorylated tau181 (P-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) with AD diagnosis. These biomarkers allow assessment of amyloid (A), neurofibrillary degeneration (T), and neurodegeneration (N) aspects of AD. Statistical analyses performed included receiver operating characteristics, Pearson and Spearman correlations, t tests, and Wilcoxon rank-sum, chi-square, and Fisher exact tests. Exposures: Exposures included age, sex, education, country of residence, apolipoprotein-ε4 (APOE-ε4) allele number, serum creatinine, blood urea nitrogen, and body mass index. Results: This study included 746 adults. Participants had a mean (SD) age of 71.0 (7.8) years, 480 (64.3%) were women, and 154 (20.6%) met clinical criteria for AD. Associations were observed between CSF and plasma P-tau181 (r = .47 [95% CI, 0.32-0.60]), NfL (r = 0.57 [95% CI, 0.44-0.68]), and P-tau181/Aβ42 (r = 0.44 [95% CI, 0.29-0.58]). For AD defined by CSF biomarkers, plasma P-tau181 and P-tau181/Aβ42 provided biological evidence of AD. Among individuals judged to be clinically healthy without dementia, biomarker-positive status was determined by plasma P-tau181 for 133 (22.7%) and by plasma P-tau181/Aβ42 for 104 (17.7%). Among individuals with clinically diagnosed AD, 69 (45.4%) had plasma P-tau181 levels and 89 (58.9%) had P-tau181/Aβ42 levels that were inconsistent with AD. Individuals with biomarker-negative clinical AD status tended to have lower levels of education, were less likely to carry APOE-ε4 alleles, and had lower levels of GFAP and NfL than individuals with biomarker-positive clinical AD. Conclusions and relevance: In this cross-sectional study, plasma P-tau181 and P-tau181/Aβ42 measurements correctly classified Caribbean Hispanic individuals with and without AD. However, plasma biomarkers identified individuals without dementia with biological evidence of AD, and a portion of those with dementia whose AD biomarker profile was negative. These results suggest that plasma biomarkers can augment detection of preclinical AD among asymptomatic individuals and improve the specificity of AD diagnosis.Item Extended genome-wide association study employing the African genome resources panel identifies novel susceptibility loci for Alzheimer's disease in individuals of African ancestry(Wiley, 2024) Ray, Nicholas R.; Kunkle, Brian W.; Hamilton-Nelson, Kara; Kurup, Jiji T.; Rajabli, Farid; Qiao, Min; Vardarajan, Badri N.; Cosacak, Mehmet I.; Kizil, Caghan; Jean-Francois, Melissa; Cuccaro, Michael; Reyes-Dumeyer, Dolly; Cantwell, Laura; Kuzma, Amanda; Vance, Jeffery M.; Gao, Sujuan; Hendrie, Hugh C.; Baiyewu, Olusegun; Ogunniyi, Adesola; Akinyemi, Rufus O.; Alzheimer’s Disease Genetics Consortium; Lee, Wan-Ping; Martin, Eden R.; Wang, Li-San; Beecham, Gary W.; Bush, William S.; Xu, Wanying; Jin, Fulai; Wang, Liyong; Farrer, Lindsay A.; Haines, Jonathan L.; Byrd, Goldie S.; Schellenberg, Gerard D.; Mayeux, Richard; Pericak-Vance, Margaret A.; Reitz, Christiane; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthIntroduction: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. Methods: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. Results: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. Discussion: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. Highlights: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.Item Missense and loss-of-function variants at GWAS loci in familial Alzheimer's disease(Wiley, 2024) Gunasekaran, Tamil Iniyan; Reyes-Dumeyer, Dolly; Faber, Kelley M.; Goate, Alison; Boeve, Brad; Cruchaga, Carlos; Pericak-Vance, Margaret; Haines, Jonathan L.; Rosenberg, Roger; Tsuang, Debby; Mejia, Diones Rivera; Medrano, Martin; Lantigua, Rafael A.; Sweet, Robert A.; Bennett, David A.; Wilson, Robert S.; Alba, Camille; Dalgard, Clifton; Foroud, Tatiana; Vardarajan, Badri N.; Mayeux, Richard; Medical and Molecular Genetics, School of MedicineBackground: Few rare variants have been identified in genetic loci from genome-wide association studies (GWAS) of Alzheimer's disease (AD), limiting understanding of mechanisms, risk assessment, and genetic counseling. Methods: Using genome sequencing data from 197 families in the National Institute on Aging Alzheimer's Disease Family Based Study and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. Results: Eighty-six rare missense or loss-of-function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) families Apolipoprotein E (APOE)-𝜀4 was the only variant segregating. However, in 60.3% of families, APOE 𝜀4, missense, and LoF variants were not found within the GWAS loci. Discussion: Although APOE 𝜀4and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants. Highlights: Rare coding variants from GWAS loci segregate in familial Alzheimer's disease. Missense or loss of function variants were found segregating in nearly 7% of families. APOE-𝜀4 was the only segregating variant in 29.7% in familial Alzheimer's disease. In Hispanic and non-Hispanic families, different variants were found in segregating genes. No coding variants were found segregating in many Hispanic and non-Hispanic families.Item New insights into the genetic etiology of Alzheimer's disease and related dementias(Springer Nature, 2022) Bellenguez, Céline; Küçükali, Fahri; Jansen, Iris E.; Kleineidam, Luca; Moreno-Grau, Sonia; Amin, Najaf; Naj, Adam C.; Campos-Martin, Rafael; Grenier-Boley, Benjamin; Andrade, Victor; Holmans, Peter A.; Boland, Anne; Damotte, Vincent; van der Lee, Sven J.; Costa, Marcos R.; Kuulasmaa, Teemu; Yang, Qiong; de Rojas, Itziar; Bis, Joshua C.; Yaqub, Amber; Prokic, Ivana; Chapuis, Julien; Ahmad, Shahzad; Giedraitis, Vilmantas; Aarsland, Dag; Garcia-Gonzalez, Pablo; Abdelnour, Carla; Alarcón-Martín, Emilio; Alcolea, Daniel; Alegret, Montserrat; Alvarez, Ignacio; Álvarez, Victoria; Armstrong, Nicola J.; Tsolaki, Anthoula; Antúnez, Carmen; Appollonio, Ildebrando; Arcaro, Marina; Archetti, Silvana; Arias Pastor, Alfonso; Arosio, Beatrice; Athanasiu, Lavinia; Bailly, Henri; Banaj, Nerisa; Baquero, Miquel; Barral, Sandra; Beiser, Alexa; Belén Pastor, Ana; Below, Jennifer E.; Benchek, Penelope; Benussi, Luisa; Berr, Claudine; Besse, Céline; Bessi, Valentina; Binetti, Giuliano; Bizarro, Alessandra; Blesa, Rafael; Boada, Mercè; Boerwinkle, Eric; Borroni, Barbara; Boschi, Silvia; Bossù, Paola; Bråthen, Geir; Bressler, Jan; Bresner, Catherine; Brodaty, Henry; Brookes, Keeley J.; Brusco, Luis Ignacio; Buiza-Rueda, Dolores; Bûrger, Katharina; Burholt, Vanessa; Bush, William S.; Calero, Miguel; Cantwell, Laura B.; Chene, Geneviève; Chung, Jaeyoon; Cuccaro, Michael L.; Carracedo, Ángel; Cecchetti, Roberta; Cervera-Carles, Laura; Charbonnier, Camille; Chen, Hung-Hsin; Chillotti, Caterina; Ciccone, Simona; Claassen, Jurgen A. H. R.; Clark, Christopher; Conti, Elisa; Corma-Gómez, Anaïs; Costantini, Emanuele; Custodero, Carlo; Daian, Delphine; Dalmasso, Maria Carolina; Daniele, Antonio; Dardiotis, Efthimios; Dartigues, Jean-François; de Deyn, Peter Paul; de Paiva Lopes, Katia; de Witte, Lot D.; Debette, Stéphanie; Deckert, Jürgen; Del Ser, Teodoro; Denning, Nicola; DeStefano, Anita; Dichgans, Martin; Diehl-Schmid, Janine; Diez-Fairen, Mónica; Dionigi Rossi, Paolo; Djurovic, Srdjan; Duron, Emmanuelle; Düzel, Emrah; Dufouil, Carole; Eiriksdottir, Gudny; Engelborghs, Sebastiaan; Escott-Price, Valentina; Espinosa, Ana; Ewers, Michael; Faber, Kelley M.; Fabrizio, Tagliavini; Fallgaard Nielsen, Sune; Fardo, David W.; Farotti, Lucia; Fenoglio, Chiara; Fernández-Fuertes, Marta; Ferrari, Raffaele; Ferreira, Catarina B.; Ferri, Evelyn; Fin, Bertrand; Fischer, Peter; Fladby, Tormod; Fließbach, Klaus; Fongang, Bernard; Fornage, Myriam; Fortea, Juan; Foroud, Tatiana M.; Fostinelli, Silvia; Fox, Nick C.; Franco-Macías, Emlio; Bullido, María J.; Frank-García, Ana; Froelich, Lutz; Fulton-Howard, Brian; Galimberti, Daniela; García-Alberca, Jose Maria; García-González, Pablo; Garcia-Madrona, Sebastian; Garcia-Ribas, Guillermo; Ghidoni, Roberta; Giegling, Ina; Giorgio, Giaccone; Goate, Alison M.; Goldhardt, Oliver; Gomez-Fonseca, Duber; González-Pérez, Antonio; Graff, Caroline; Grande, Giulia; Green, Emma; Grimmer, Timo; Grünblatt, Edna; Grunin, Michelle; Gudnason, Vilmundur; Guetta-Baranes, Tamar; Haapasalo, Annakaisa; Hadjigeorgiou, Georgios; Haines, Jonathan L.; Hamilton-Nelson, Kara L.; Hampel, Harald; Hanon, Olivier; Hardy, John; Hartmann, Annette M.; Hausner, Lucrezia; Harwood, Janet; Heilmann-Heimbach, Stefanie; Helisalmi, Seppo; Heneka, Michael T.; Hernández, Isabel; Herrmann, Martin J.; Hoffmann, Per; Holmes, Clive; Holstege, Henne; Huerto Vilas, Raquel; Hulsman, Marc; Humphrey, Jack; Jan Biessels, Geert; Jian, Xueqiu; Johansson, Charlotte; Jun, Gyungah R.; Kastumata, Yuriko; Kauwe, John; Kehoe, Patrick G.; Kilander, Lena; Kinhult Ståhlbom, Anne; Kivipelto, Miia; Koivisto, Anne; Kornhuber, Johannes; Kosmidis, Mary H.; Kukull, Walter A.; Kuksa, Pavel P.; Kunkle, Brian W.; Kuzma, Amanda B.; Lage, Carmen; Laukka, Erika J.; Launer, Lenore; Lauria, Alessandra; Lee, Chien-Yueh; Lehtisalo, Jenni; Lerch, Ondrej; Lleó, Alberto; Longstreth, William, Jr.; Lopez, Oscar; Lopez de Munain, Adolfo; Love, Seth; Löwemark, Malin; Luckcuck, Lauren; Lunetta, Kathryn L.; Ma, Yiyi; Macías, Juan; MacLeod, Catherine A.; Maier, Wolfgang; Mangialasche, Francesca; Spallazzi, Marco; Marquié, Marta; Marshall, Rachel; Martin, Eden R.; Martín Montes, Angel; Martínez Rodríguez, Carmen; Masullo, Carlo; Mayeux, Richard; Mead, Simon; Mecocci, Patrizia; Medina, Miguel; Meggy, Alun; Mehrabian, Shima; Mendoza, Silvia; Menéndez-González, Manuel; Mir, Pablo; Moebus, Susanne; Mol, Merel; Molina-Porcel, Laura; Montrreal, Laura; Morelli, Laura; Moreno, Fermin; Morgan, Kevin; Mosley, Thomas; Nöthen, Markus M.; Muchnik, Carolina; Mukherjee, Shubhabrata; Nacmias, Benedetta; Ngandu, Tiia; Nicolas, Gael; Nordestgaard, Børge G.; Olaso, Robert; Orellana, Adelina; Orsini, Michela; Ortega, Gemma; Padovani, Alessandro; Paolo, Caffarra; Papenberg, Goran; Parnetti, Lucilla; Pasquier, Florence; Pastor, Pau; Peloso, Gina; Pérez-Cordón, Alba; Pérez-Tur, Jordi; Pericard, Pierre; Peters, Oliver; Pijnenburg, Yolande A. L.; Pineda, Juan A.; Piñol-Ripoll, Gerard; Pisanu, Claudia; Polak, Thomas; Popp, Julius; Posthuma, Danielle; Priller, Josef; Puerta, Raquel; Quenez, Olivier; Quintela, Inés; Qvist Thomassen, Jesper; Rábano, Alberto; Rainero, Innocenzo; Rajabli, Farid; Ramakers, Inez; Real, Luis M.; Reinders, Marcel J. T.; Reitz, Christiane; Reyes-Dumeyer, Dolly; Ridge, Perry; Riedel-Heller, Steffi; Riederer, Peter; Roberto, Natalia; Rodriguez-Rodriguez, Eloy; Rongve, Arvid; Rosas Allende, Irene; Rosende-Roca, Maitée; Royo, Jose Luis; Rubino, Elisa; Rujescu, Dan; Sáez, María Eugenia; Sakka, Paraskevi; Saltvedt, Ingvild; Sanabria, Ángela; Sánchez-Arjona, María Bernal; Sanchez-Garcia, Florentino; Sánchez Juan, Pascual; Sánchez-Valle, Raquel; Sando, Sigrid B.; Sarnowski, Chloé; Satizabal, Claudia L.; Scamosci, Michela; Scarmeas, Nikolaos; Scarpini, Elio; Scheltens, Philip; Scherbaum, Norbert; Scherer, Martin; Schmid, Matthias; Schneider, Anja; Schott, Jonathan M.; Selbæk, Geir; Seripa, Davide; Serrano, Manuel; Sha, Jin; Shadrin, Alexey A.; Skrobot, Olivia; Slifer, Susan; Snijders, Gijsje J. L.; Soininen, Hilkka; Solfrizzi, Vincenzo; Solomon, Alina; Song, Yeunjoo; Sorbi, Sandro; Sotolongo-Grau, Oscar; Spalletta, Gianfranco; Spottke, Annika; Squassina, Alessio; Stordal, Eystein; Tartan, Juan Pablo; Tárraga, Lluís; Tesí, Niccolo; Thalamuthu, Anbupalam; Thomas, Tegos; Tosto, Giuseppe; Traykov, Latchezar; Tremolizzo, Lucio; Tybjærg-Hansen, Anne; Uitterlinden, Andre; Ullgren, Abbe; Ulstein, Ingun; Valero, Sergi; Valladares, Otto; Van Broeckhoven, Christine; Vance, Jeffery; Vardarajan, Badri N.; van der Lugt, Aad; Van Dongen, Jasper; van Rooij, Jeroen; van Swieten, John; Vandenberghe, Rik; Verhey, Frans; Vidal, Jean-Sébastien; Vogelgsang, Jonathan; Vyhnalek, Martin; Wagner, Michael; Wallon, David; Wang, Li-San; Wang, Ruiqi; Weinhold, Leonie; Wiltfang, Jens; Windle, Gill; Woods, Bob; Yannakoulia, Mary; Zare, Habil; Zhao, Yi; Zhang, Xiaoling; Zhu, Congcong; Zulaica, Miren; EADB; GR@ACE; DEGESCO; EADI; GERAD; Demgene; FinnGen; ADGC; CHARGE; Farrer, Lindsay A.; Psaty, Bruce M.; Ghanbari, Mohsen; Raj, Towfique; Sachdev, Perminder; Mather, Karen; Jessen, Frank; Ikram, M. Arfan; de Mendonça, Alexandre; Hort, Jakub; Tsolaki, Magda; Pericak-Vance, Margaret A.; Amouyel, Philippe; Williams, Julie; Frikke-Schmidt, Ruth; Clarimon, Jordi; Deleuze, Jean-François; Rossi, Giacomina; Seshadri, Sudha; Andreassen, Ole A.; Ingelsson, Martin; Hiltunen, Mikko; Sleegers, Kristel; Schellenberg, Gerard D.; van Duijn, Cornelia M.; Sims, Rebecca; van der Flier, Wiesje M.; Ruiz, Agustín; Ramirez, Alfredo; Lambert, Jean-Charles; Medical and Molecular Genetics, School of MedicineCharacterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.